Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Расширенная матрица системы имеет вид





Здесь

.

Расширенная матрица системы имеет вид

.

Выполним прямой ход метода Гаусса.

Шаг 1. Для удобства вычислений поменяем местами первую и вторую строки:

.

Так как , то умножая первую строку на (-2) и на (-1) и прибавляя полученные строки соответственно ко второй и третьей строкам, исключим переменную из всех строк, начиная со второй:

.

Шаг 2. Так как , то умножим вторую строку на (-3/5) и прибавим к третьей, таки образом исключим переменную из третьей строки:

.

Получили систему уравнений, соответствующую последней матрице:

откуда, используя обратный ход метода Гаусса, найдем из третьего уравнения ; из второго уравнения найдем ; из первого уравнения .

Ответ: (3; -5; 2).

 

Контрольная работа №1

 

I. 1. Найти ранг матрицы системы; исследовать систему линейных уравнений на совместность:

а) методом элементарных преобразований;

б) методом окаймляющих миноров.

2.Решить систему линейных уравнений:

а) по формулам Крамера;

б) методом обратной матрицы;

в) методом Гаусса.

3. Найти обратную матрицу:

а) методом Гаусса ;

б) сделать проверку .

 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

II. Найти множество решений однородной системы трех линейных уравнений с четырьмя неизвестными.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

III. Вычислить определитель четвертого порядка:

1. ; 2. ; 3. ;

4. ; 5. ; 6.

7. ; 8. ; 9. ;

10. ; 11. ; 12. ;

13. ; 14. ; 15. ;

16. ; 17. ; 18. ;

19. ; 20. ; 21. ;

22. ; 23. ; 24. ;

25. ; 26. ; 27.

28. ; 29. ; 30. .

IV. Вычислить матрицу , если:

1. , ;
2. , ;
3. , ;
4. , ;
5. , ;
6. , ;
7. , ;
8. , ;
9. , ;
10. , ;
11. , ;
12. , ;
13. , ;
14. , ;
15. , ;
16. , ;
17. , ;
18. , ;
19. , ;
20. , ;
21. , ;
22. , ;
23. , ;
24. , ;
25. , ;
26. , ;
27. , ;
28. , ;
29. , ;
30. , .

 

 







Дата добавления: 2015-12-04; просмотров: 194. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия