Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поток в сети





Сетью называют взвешенный орграф с двумя выделенными вершинами: истоком и стоком. Исток имеет нулевую полустепень захода, а сток — нулевую полустепень исхода. Вес дуги означает ее пропускную способность. Поток — еще одно число, приписанное дуге. Поток дуги не больше ее пропускной способности и может меняться. Поток выходит из истока и без потерь, в том же объеме заходит в сток. Условие равновесия (по объему входа и выхода) выполняется и для каждой вершины сети.

Задача о наибольшем потоке в сети — не единственная, но, вероятно, основная задача для потоков в сети. Очевидна возможность практического применения этой задачи для решения транспортных проблем (пробки на дорогах можно условно связывать с насыщением сети или отдельной ее дуги), проблем транспортировки нефтепродуктов или электроэнергии.

 

З а д а ч а. Задана пропускная способность дуг транспортной сети с началом (истоком) в вершине s и концом (стоком) в вершине t. Используя алгоритм Форда–Фалкерсона, найти максимальный поток по сети.

 

Пр и м е р. Задана пропускная способность дуг транспортной сети с началом в вершине 1 и концом в вершине 8. Используя алгоритм Форда–Фалкерсона, найти максимальный поток по сети.

Р еше н и е. Алгоритм состоит из двух частей — насыщения потока и его перераспределения. Поток называется насыщенным, если любая цепь из истока в сток содержит насыщенную дугу. В первой части алгоритма разыскиваются цепи из истока в сток и все дуги цепи насыщаются одинаковым возможно большим потоком, определяемым пропускной способностью наиболее «тонкой» дуги или наименьшей разностью между пропускной способностью и потоком в дуге. Различные цепи могут иметь общие дуги. Полученный поток согласован с условием сохранения в узлах (вершинах). Поток, входящий в вершину, равен потоку, выходящему из нее. Поток в сети проходит по цепям из истока в сток, т.е. недопустим многократный проход по отдельной дуге. Первая часть задачи считается решенной, если нет ненасыщенных цепей из истока в сток. Первая часть задачи не имеет единственного решения.

Во второй части перераспределение потока выполняется исходя из условия достижения общего по сети максимума потока. Для этого в основании графа (т.е. в графе, в котором снята ориентация дуг) разыскиваются маршруты из истока в сток, состоящие из ребер, соответствующих ненасыщенным дугам, направленным вперед, и непустым дугам, направленным назад. Потоки в дугах прямого направления увеличиваются на величину, на которую уменьшаются потоки в обратных дугах выбранного маршрута. При этом, очевидно, нельзя превышать пропускную способность дуг, направленных вперед, и допускать отрицательных потоков в обратных дугах. В некоторых случаях при удачном выборе цепей в первой части алгоритма перераспределения потока не требуется.

1. Насыщение потока. Рассмотрим путь 1–2–4–6–8. Пропустим через этот путь поток, равный 4. При этом дуги [2, 4] и [4, 6] будут насыщенными. Аналогично, путь 1–3–5–7–8 насытим потоком 4. Распределение потока отметим на графе (рис. 4.5). В числителе ставим пропускную способность, в знаменателе — поток. Числитель всегда больше знаменателя, а знаменатель может быть и нулем.

Заметим, что из 1 в 8 есть еще ненасыщенный путь, 1–3–2–5–4–7– 6–8,поток в котором можно увеличить на 2. При этом насытятся дуги [1, 3], [2, 5] и [4, 7].

Из 1 в 8 больше нет ненасыщенных путей. По дуге [1,3] двигаться нельзя (она уже насыщена), а движение по дуге [1,2] заканчивается в вершине 2, так как обе выходящие из нее дуги насыщены.

2. Перераспределение потока. Найдем последовательность вершин от 1 к 8, такую, что дуги, соединяющие соседние вершины, направленные из 1 в 8, не насыщены, а дуги, направленные в обратном направлении, не пусты. Имеем единственную последовательность: 1–2–3–5–7–6–8. Перераспределяем поток. Поток в дугах прямого направления увеличиваем на 1, а поток в дугах обратного направления уменьшаем на 1. Процесс продолжаем до тех пор, пока одна из прямых дуг не будет насыщена или какая-нибудь обратная дуга не будет пуста.

Поток в насыщенной сети можно посчитать по потоку, выходящему из истока 1 или входящему в сток 8. Очевидно, эти числа должны быть равны. Кроме того, для проверки решения следует проверить условие сохранения потока по узлам. Для каждого узла суммарный входящий поток должен быть равен выходящему. В рассматриваемом примере поток равен 11. Распределение потока по дугам при одном и том же суммарном минимальном потоке в сети не единственное.

 







Дата добавления: 2015-12-04; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия