И их прочностные свойства
Нанокристаллические порошки имеют громадную удельную поверхность: от 20—40 м2/г при диаметре частиц 100 нм и до 110—120 м2/г при диаметре 10 нм. Они легко захватывают примеси, особенно кислород, а также водород. Большая удельная поверхность нанокристаллических порошков создает трудности при их переработке в компактный материал. Порошки трудно собирать и транспортировать к месту переработки. Для предупреждения их окисления предлагается, в частности, окружать каждую частицу защитной пленкой, которая должна разрушаться и удаляться без остатка при нагреве порошков или прессовок при спекании. Нанокристаллические порошки плохо прессуются. В компактном материале остаточная пористость достигает 10 % (об.), у металлических нанокристаллических материалов ее удается сократить до 3 % (об.), в керамических материалах, у которых порошки прессуются еще хуже, остаточная пористость составляет 15 % (об.). Из-за пористости свойства порошковых нанокристаллических материалов непостоянны. В то же время получение и переработка нанокристаллических порошков является наиболее универсальным методом, пригодным для создания нанокристаллической структуры в разнообразных материалах. При сравнении свойств этих материалов с микрокристаллическими аналогами обращает на себя внимание вклад граничных слоев. Так, модули упругости Еи G у нанокристаллических материалов на 30 % ниже, а твердость при t < 0,4—0,5гпл в 2—7 раз выше, чем у соответствующих аналогов, твердость которых подчиняется известной зависимости Холла-Петча:
HV=HVo + kd-1/2, (1)
где HV0 — твердость по Виккерсу монокристалла; к — коэффициент; d - диаметр зерна. Однако при 20—25 °С пластическое деформирование при вдавливании индентора уже сопровождается диффузионным скольжением, когда размер зерен становится менее 10 нм, твердость понижается из-за увеличения вклада диффузионной подвижности пограничных слоев. Несмотря на понижение, твердость нанокристаллических материалов с размерами зерен менее 10 нм в несколько раз превышает твердость микрокристаллических аналогов. Нанокристаллические материалы отличаются повышенной прочностью как у однофазных (медь, палладий), так и у многофазных, полученных кристаллизацией аморфных сплавов: предел текучести в 2—3 раза, а временное сопротивление в 1,5—8 раз выше, чем у соответствующих аналогов. Как и для твердости, начиная с размера зерен 10 нм и меньше, установлено понижение предела текучести. Нанокристаллические материалы имеют высокие демпфирующие свойства, так как из-за различия модулей упругости самих зерен и граничных слоев упругие колебания распространяются неоднородно и существенно рассеиваются. У меди с размером зерен 200 нм уровень фона внутреннего трения, являющегося мерой демпфирующей способности, в 2—3 раза выше, чем у серого чугуна, который считается хорошим демпфером. Теплофизические свойства нанокристаллических и обычных материалов отличаются из-за влияния масштабного фактора (размера зерна), а также содержания и состояния граничных слоев. В порошковых сплавах и в деформированных металлических сплавах после рекристаллизационного отжига состояние граничного слоя максимально неравновесное. При 20 — 25°С с заметной скоростью и полнотой развиваются процессы рекристаллизации, а следовательно, изменяются свойства. В порошковых керамических материалах свойства более устойчивы, так как для их изменения требуется отжиг при 300—500°С. Теплоемкость нанокристаллических сплавов при низких температурах в 1,2—2 раза выше, чем у соответствующих аналогов, а при 20—25 °С несколько выше ее из-за высокой теплоемкости граничного слоя. Нанокристаллические сплавы сильнее расширяются при нагреве из-за более интенсивного (в 2— 2,5 раза) расширения граничного слоя по сравнению с зернами. У нанокристаллической меди при размере зерен 8 нм коэффициент теплового расширения вдвое превысил его значение у поликристаллической меди. Удельное сопротивление нанокристаллических материалов выше, чем у соответствующих аналогов, так как электроны проводимости сильнее рассеиваются на границах зерен. Так, у нанокристаллических меди, никеля и железа с размерами зёрен 100—200 нм удельное электросопротивление при 20 °С возрастает соответственно на 15, 35 и 55 %. Уменьшение диаметра зерна меди до 7 нм повышает удельное электросопротивление в несколько раз. Ферромагнетизм у нанокристаллических сплавов, получаемых из аморфных сплавов на основе железа, проявляется необычно. Как и следовало ожидать, образование нанокристаллической структуры в сплавах Fe81Si7B12 и Fe60Cr18Ni7SixB15-x сопровождается повышением магнитной твердости. Коэрцитивная сила от исходного значения 40 А/м для аморфного состояния увеличивается в 125—700 раз. В то же время разработаны сплавы с аморфно-кристаллической структурой, которые имеют комплекс свойств магнитомягкого материала. Сплав Fe73.5CuNb3Si13.5B9 является одним из лучших в этой группе. После отжига при 530—550°С в течение 1 ч исходный аморфный сплав приобретает двухфазную аморфно-кристаллическую структуру — зерна твердого раствора кремния в железе с размерами 10—20 нм, окруженные аморфной оболочкой. При отжиге кремний концентрируется в нанокристаллах, а медь, ниобий и бор — в аморфной фазе, содержание которой достигает 20—40 % (об.), при толщине оболочки около 1 нм (соответствует нескольким атомным слоям). Сплавы этого типа имеют близкую к нулю магнитострикцию (как сумму отрицательной магнитострикции нанокриcталлов и положительной магнитострикции аморфной фазы) и такую же малую константу магнитной кристаллографической анизотропии. Магнитные характеристики зависят прежде всего от размера зерен. При оптимальном размере зерна (10—20 нм) сплав Fe73.5CuNb3Si13.5B9 имеет Bs = 1,24Тл, Нс = 0,53 А/м и = 105 (при частоте 1 кГц). Другие сплавы этой группы в зависимости от содержания меди и условий отжига (простой отжиг, отжиг в продольном или поперечном магнитном поле) имеют разную форму петли гистерезиса (Br /Bs = 0,6—0,9). Нанокристаллические материалы только начинают использовать. Часто основанием применения материала становится какое-либо одно свойство. Так, керамические материалы, содержащие нанокристаллические частицы металла, используют для поглощения электромагнитного излучения в радиодиапазоне длин волн. Суспензии частиц железа с размерами от 30 нм до 1—2 мкм в смазочном масле восстанавливают изношенные детали, не прерывая работы двигателя. При плазменных процессах могут быть получены материалы, у которых химический и фазовый составы, микроструктура и, следовательно, характеристики будут существенно отличаться от получаемых традиционными методами. Это связано с неравновесными физико-химическими процессами, протекающими при их получении и обработке. В частности, при плазменном получении порошков на стадии их образования при конденсации из пара могут быть обеспечены условия, характеризующиеся огромными пресыщениями, приводящими к множественному зародышеобразованию конденсирующейся фазы при ограниченном времени роста частиц. Быстрый вывод их из зоны конденсации, препятствующий коагуляции, дает возможность получить вещество в ультрадисперсном (нанодисперсном) состоянии с размером частиц порядка сотни ангстрем. В таких системах проявляются аномальные по сравнению с «массивными» частицами свойства, поскольку число атомов, находящихся на поверхности, становится соизмеримо с их общим числом. Наличие избыточной поверхностной энергии частиц ультрадисперсных порошков (УДП) приводит к существенному возрастанию их активности.
|