Общая характеристика и классификация
Основные морфологические признаки элементов мышечных тканей — удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина. Специальные сократительные органеллы — миофиламенты обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин — это белок-пигмент (наподобие гемоглобина), обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (и поступление кислорода при этом резко падает). В основу классификации мышечных тканей положены два принципа — морфофункциональный и гистогенетический. В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы: исчерченные мышечные ткани и гладкие мышечные ткани. Поперечнополосатые (исчерченные) мышечные ткани. В цитоплазме их элементов миозиновые филаменты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные комплексы — саркомеры. В соседних миофибриллах структурные субъединицы саркомеров расположены на одинаковом уровне и создают поперечную исчерченность. Исчерченные мышечные ткани сокращаются быстрее, чем гладкие. Гладкие (неисчерченные) мышечные ткани. Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенными по всей длине нитями. В соответствии с гистогенетическим принципом в зависимости от источников развития (т.е. эмбриональных зачатков) мышечные ткани подразделяются на 5 типов: 1. мезенхимные (из десмального зачатка в составе мезенхимы) 2. эпидермальные (из кожной эктодермы и из прехордальной пластинки) 3. нейральные (из нервной трубки) 4. целомические (из миоэпикардиальной пластинки висцерального листка спланхнотома) 5. соматические (миотомные) Первые три типа относятся к подгруппе гладких мышечных тканей, четвертый и пятый — к подгруппе поперечнополосатых.
№58 Мион (поперечнополосатое мышечное волокно), его характеристика. Поперечно-полосатая скелетная мышечная ткань возникает из миобластов миотома дорзальной мезодермы. В ходе дифференцировки возникают две клеточные линии. Миобласты одной линии располагаются в виде цепочки и сливаются друг с другом - образуются мышечные трубочки (миотубы); в них формируется сократительный аппарат (миофибриллы). Сначала миофибриллы располагаются по периферии, а ядра лежат в центре; затем объем миофибрилл увеличивается, они вытесняют ядра на периферию, под плазмолемму, а сами занимают центральную часть волокна - формируется миосимпласт. Клетки другой линии дифференцируются в миосателлиты. Они локализуются на поверхности ми-осимпласта и являются камбиальными для скелетной мышечной ткани; за счет них идет регенерация волокна. Структурно-функциональным элементом скелетной мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосател-литов, покрытых общей базальной мембраной. Совокупность мышечного волокна и сателлита называется мионом. Длина волокна может достигать 12 см, толщина 50-100 мкм. Комплекс, включающий плазмолемму миосимпласта и базальную мембрану, называется сарколеммой. В отдельных участках сарколемма отдает внутрь саркоплазмы впячивания в виде трубочек, которые проходят перпендикулярно волокну через всю его толщу - Т-трубочки. К ним с обеих сторон подходят продольные цистерны саркоплазматического ретикулума - L-цистерны. Подойдя к Т-трубочам, L-цистерны сливаются и образуют поперечные терминальные цистерны - Т-цистерны. Вместе с Т-трубочками Т-цистерны образуют триаду - мембранную систему. Под сарколеммой находится саркоплазма. Ядра располагаются по периферии, под сарколеммой, здесь же находятся многочисленные митохондрии с большим количеством крист. Цитоскелет образован промежуточными фибриллами диаметром 10 нм, состоящими из белка десмина. Десминовый цитоскелет связан с Z-дисками миофибрилл вспомогательными белками (а-актинин, винкулин). Кроме десминовых фибрилл, есть фибриллы диаметром 2,5 нм, образованные белком титаном. В саркоплазме содержится белок миоглобин.
№59 Саркомер, его структура и значение. Теория мышечного сокращения.
Основную часть мышечного волокна составляют миофибриллы. Их структурно-функциональной единицей является саркомер - участок между двумя Z-линиями. Саркомер состоит из: Z-линия - 1/21-диска - 1/2 А-диска - 1/2 Н-зоны - М-линия - 1/2 Н-зоны - 1/2 А-диска - 1/2 1-диска - Z-линия. Каждый саркомер состоит из тонких актиновых (актин, тропонин, тропомиозин) и толстых миозиновых филаментов. Толстые филаменты, кроме миозина, содержат белки: титин - прикрепляет толстые нити к Z-линии; небулин - связывает толстые и тонкие филаменты; миомезин и белок С - связывают толстые филаменты в области М-линии. Толстые филаменты лежат только в диске А. Тонкие филаменты - в диске I, но частично заходят в диск А. Темная часть А-диска - актиновые и миозиновые филаменты. Н-полоска - светлая часть А-диска (содержит только миозиновые филаменты). М-линия - в центре Н-полоски, место соединения всех миозиновых филаментов друг с другом. Механизм мышечных сокращений (теория скольжения нитей по X. Хаксли) запускается ацетилхолином при передаче нервного импульса аксоном мотонейрона спинного мозга, образующего конечную холинер-гическую терминаль - двигательную бляшку. Ацетилхолин поступает в туннель Т-системы и вызывает выход Са2+ из Z-пузырьков. Кальций активирует тропонин, снимающий блок из тропомиозина, головки тяжелого меромиозина начинают двигаться по глобулам актина. Головки меромио-зина изгибаются в шарнирных областях и присоединяются к молекулам актина, совершая при этом гребковые движения. Затем они отсоединяются от активных: участков и вновь присоединяются в новом месте. Это вызывает скольжение толстых филаментов вдоль тонких. Для возвращения головки миозина в исходное положение необходима энергия АТФ, которая распадается благодаря АТФ-азной активности миозина. При отсутствии нервных импульсов Са2+ возвращается в саркоплазматический ретикулум, активные центры на актиновых филаментах закрываются тропонином. При мышечном сокращении Z-линии сближаются, уменьшаются или исчезают 1-диск, М-полоски, появляются поперечные мостики из головок миозина.
№60 Двигательная единица и передача нервного импульса на поперечно-полосатое мышечное волокно. С функциональной точки зрения, мышца состоит из двигательных единиц. Каждая двигательная единица - это группа мышечных волокон (миосимпластов), иннервируемых одним двигательным нейроном передних рогов спинного мозга, которые сокращаются одновременно. У человека двигательная единица, как правило, состоит из 150 (и более) мышечных волокон, причем в различных мышцах число волокон, входящих в состав двигательной единицы (иннервационное число), различно. Так, например, в наружной прямой мышце глаза человека двигательная единица включает 13-20 мышечных волокон, в двуглавой мышце плеча - 750 - 1000, в медиальной головке икроножной мышцы - 1500 - 2000 (И. Рюэгг, 1985). Будучи иннервируемыми одним двигательным нейроном, все мышечные волокна одной двигательной единицы сокращаются одновременно, но различные двигательные единицы могут сокращаться как одновременно, так и последовательно. Поперечнополосатые мышечные волокна одной двигательной единицы идентичны по своему строению и функциональным особенностям. Различают две разновидности двигательных единиц: медленные и быстрые. Двигательные единицы - периферические мотонейроны и иннервируемые ими мышечные волокна. Простейшим элементом двигательной функции служит двигательная единица - спинальный мотонейрон и группа иннервируемых им мышечных волокон.
|