Механизмы детерминации пола в пренатальный период
Генетический пол. Различия в формировании мужского и женского организма обнаруживаются с первых недель его развития. Все клетки человека, за исключением половых, имеют 23 пары хромосом, из которых одна пара — половые. Половые клетки (гаметы) — яйцеклетки и сперматозоиды — образуются путем особого деления — мейоза, отличающегося от обычного деления — митоза — тем, что при этом вновь возникшие клетки получают одну (сромосому из каждой пары. Генетический пол определяется отцовской половой клеткой (спермато-|зоидом) во время оплодотворения. Это связано с тем, что развитие женско-i пола у человека обусловлено наличием в зиготе (оплодотворенной яйцеклетке) двух половых хромосом X и X, а мужского — X и Y. Все яйцеклетки в результате мейоза имеют одинаковые хромосомы — X, тогда как спермато-
Частота появления мужских или женских зигот неодинакова, поскольку выживаемость сперматозоидов, несущих мужское или женское начало, различна и зависит от многих факторов, в том числе от кислотности среды влагалища. Все эти факторы являются сложной производной от физического и психического состояния женщины в момент оплодотворения. Рис. 17.1. Генетическая детерминация пола. Роль половых хромосом в детерминации пола. До 1969 г. число Х-хромо-сом считали важнейшим детерминантом пола у млекопитающих. Позднее исследователи сместили акцент на Y-хромосому, исходя из данных о наличии людей с особенными кариотипами (хромосомными наборами). Так, встречаются индивиды с одной Х-хромосомой (синдром Тернера), которые выглядят как женщины, с одной Y-хромосомой и множественными Х-хромосомами (синдром Клейнфельтера), ведущие себя как мужчины, а также женщины с кариотипами XY. Есть мужчины с кариотипом XX, что обусловлено переносом нескольких участков короткого плеча Y-хромосомы на общий для обеих аутосом псевдоаутосомальный участок Х-хромосомы. Эти мужчины обладают нормальными яичками, но стерильны. Они встречаются с частотой приблизительно один на 20 000 человек (Смирнов, 1997). В 60-х годах А. Жост на основе экспериментов по удалению гонадного валика (зачатка будущих гонад) у ранних эмбрионов кролика пришел к выводу: отсутствие гонадного валика при формировании гонады приводит к развитию всех эмбрионов как самок. Он высказал предположение, что сек-ретируемый гонадами самцов тестостерон ответственен за маскулинизацию плодов, и предсказал наличие еще одного вещества, элиминирующего зачатки женской половой системы в зародыше, позднее названного ан-тимюллеровским гормоном. На основе этих данных Жост сформулировал принцип: хромосомный пол, обусловленный наличием или отсутствием Y-хромосомы, определяет дифференциацию эмбриональной гонады в яички или яичник, которые контролируют фенотипический пол организма (Смирнов, 1997). Характеристика Y-хромосомы. Она существенно отличается от других хромосом кариотипа тем, что обеднена генами и обогащена повторяющимися блоками нуклеотидов и сателлитной ДНК. Она невелика, тем не менее ко- I пирующей способности ее ДНК достаточно для нескольких тысяч генов. Боль-1Ц1ИНСТВО Y-хромосомных последовательностей гомологичны ДНК Х-хромосо-,1 или аутосом, и лишь часть из них уникальна. Y-хромосома единственная в геноме млекопитающих не работает непосредственно на реализацию фенотипа. Ее генетическая значимость связана с преемственностью между поколениями, в частности, с контролем гамето-I генеза, первичной детерминацией пола. Жесткий отбор действует только на (немногие ее гены, остальная ДНК более пластична. Существует гипотеза, что первоначально Y-хромосома контролировала I гаметный пол — гаметогенез — и не была связана с первичным определением пола. Эта функция возникла только у позвоночных и особенно у млекопитающих, у которых и мужской, и женский зародыши развиваются в утробе матери в избытке женских половых гормонов, способных воздейство-I вать на будущий пол эмбриона. Y-хромосома в этом случае обеспечивает возможность выживания мужских зародышей, поскольку прогонады у последних успевают сделать свой выбор в пользу яичек с помощью специаль-1 ного генетического блокирующего механизма еще до воздействия женских I половых гормонов (Смирнов, 1997). Диморфизм (внешние и внутренние различия в формировании мужского I и женского организма) контролируется не Y-хромосомой, а концентраци-| ей половых гормонов в критический период развития организма.
Первичная детерминация пола. Схема определения пола у млекопитающих может выглядеть так. На догонадной стадии у эмбриона отсутствуют половые органы. На прогонадной — выделяются гонадный валик и бисексуальные гонады, предшественники и мужских, и женских половых органов. Предшественником женских половых органов является Мюллеро-ва система, мужских — Вольфова система. Мюллерова система в дальнейшем дает начало фаллопиевым трубам, матке, влагалищу. Из Воль-фовой системы развиваются яички, придатки яичек, семявыносящий проток, предстательная железа (Carlson, 1992).
Первичная закладка пола связана с программированием Y-хромосомой синтеза фактора, определяющего развитие яичек. Дифференциров-ка гонад у человеческого зародыша происходит приблизительно на шестой неделе развития, когда у XY-зародыша образуются яички, а у
ХХ-зародыша — яичники (рис. 17.2). Это приводит к появлению клеток Сертоли, окружающих семявыносящие канальцы. Клетки Сертоли, в свою очередь, синтезируют фактор, подавляющий развитие Мюллеровых протоков, что ведет к формированию Вольфовых протоков (рис. 17.2). Позднее в них возникают клетки Лейдига, синтезирующие тестостерон и дигидро-тестостерон, которые стимулируют развитие Вольфовой системы (Смирнов, 1977). Синтез тестис-определяющего фактора связывают с активностью гена SRY (sex determinging region Ygene), открытого в 1976 г. (Berta e. а., 1992; Koopman e. а., 1992). Этот ген у человека имеет небольшой размер, не содержит интронов (вставок, непосредственно не определяющих структуру белка), кодирует белок размером в 204 аминокислотных остатка. Это лишь один ген из большого семейства (их около 20) (Смирнов, 1997). Поскольку эмбрионы и гонады будущих самцов растут быстрее, чем самок, еще до развития гонадного бугорка можно предположить, что есть и другие факторы, предопределяющие дифференциацию прогонад по мужскому или женскому типу. Был найден ген DAX1, кодирующий ядерный рецептор. При дупликации (удвоении) он может вызывать возвращение мужского пола к женскому. Он чувствителен к гормонам и при высокой их концентрации способен преодолеть сигнал SRY гена и сдвинуть развитие прогонад в направлении яичника. Этот ген рассматривается как реликт более примитивной Х-хромосом-ной системы детерминации пола. Предполагается, что активность SRY гена является недостаточным усло В отличие от Вольфовой системы Мюллерова не нуждается в гормональной стимуляции, поэтому при всех сбоях в последовательности активации генов, кодирующих факторы дифференцировки гонад, формируется женский зародыш. Мюллерова система имеет рецепторы к гормону, подавляющему ее собственное развитие, а Вольфова чувствительна только к андро-генам. Активность андрогенов продолжается приблизительно до 32-й недели, а затем клетки Лейдига претерпевают обратное развитие. Формирование женских и мужских половых органов. Уже отмечалось, что синдром Тернера связан с наличием только одной Х-хромосомы (ХО) у человека, когда отсутствует и вторая Х-хромосома и Y-хромосома. У таких организмов нет ни мужских, ни женских гонад, но развиваются женские внутренние и наружные половые органы, поскольку для этого не нужны до-
полнительные факторы. Внутренние половые органы женщины формируются из Мюллеровой системы, а наружные — под воздействием гормонов, вырабатываемых фетальными (fetus — плод, лат.) женскими половыми органами. Развитие внешних половых органов мужчины Определяется активностью яичек и выработкой ими фетальных андрогенов (рис. 17.3). Факторы, участвующие в становлении внутренних и внешних половых органов, обозначены на рис. 17.4. С активностью фетальных гормонов связана и дифференцировка определенных отделов мозга, регулирующих половые различия в поведении. I Рис 17.4. Гормональный контроль маскулинизации и дефеминизации внутренних и внешних I половых органов (Carlson, 1992).
|