Студопедия — Последствия влияние засухи на сельскохозяйственные растения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Последствия влияние засухи на сельскохозяйственные растения






 

Засуха характеризуется комплексом неблагоприятных условий, приводящих к глубокому дефициту воды в почве и в растении [ Третьяков С. 243-244]. Угнетающее действие засухи происходит из-за несоответствия потребности растения во влаге и поступлении её из почвы.

Среди экстремальных природных явлений засухи проявляются наиболее неблагоприятным воздействием на сельское хозяйство в большинстве земледельческихрайонов Российской Федерации. Так, в наиболее жестокую засуху 2010 года гибель посевов наблюдалась на площади 13,3 млн га, в менее интенсивную засуху 2012 г. погибло 5,5 млн га [Страшная, Максименкова, 2011, с. 194–214].

Засуха – это длительный бездождливый пери­од, сопровождаемый снижением относительной влажности воз­духа, влажности почвы и повышением температуры, когда не обеспечиваются нормальные потребности растений в воде. Наибольший вред засуха при­чиняет в весеннее и летнее время, когда идет формирование генеративных органов растений. В отдельные годы урожайность сельскохозяйственных культур, пострадавших от засухи, снижа­ется до минимальных величин (у зерновых до 0,3 – 0,4 т/га) [Володько, 1983, с.12].

Засухоустойчивость –способность растений переносить дли­тельные засушливые периоды, значительный водный дефицит, обезвоживание клеток, тканей и органов. При этом ущерб уро­жая зависит от продолжительности засухи и ее напряженности. Засухо­устойчивость обусловлена генетически определенной приспособ­ленностью растений к условиям места обитания, а также адапта­цией к недостатку воды. Засухоустойчивость выражается в спо­собности растений переносить значительное обезвоживание за счет развития высокого водного потенциала тканей при функци­ональной сохранности клеточных структур, а также за счет адап­тивных морфологических особенностей стебля, листьев, генера­тивных органов, повышающих их выносливость, толерантность к действию длительной засухи [Прокофьев, 1978, с. 3-6].

Для агронома особенно важно знание признаков и свойств, определяющих устойчивость к засухе растений – мезофитов. Многие физиологические факторы, механизмы устойчивости растений к засухе, характерные для ксерофитов, в той или иной степени представлены у растений-мезофитов. К мезофитам относятся основные виды злаковых и бобовых трав, зерновые и зернобобовые культуры, корне- и клубнеплоды, масличные и прядильные культуры, возделывае­мые в России. Мезофиты произрастают в условиях достаточного увлажнения. Осмотическое давление клеточного сока у них 1 – 1,5 тыс. кПа [Горышина, 1979, с.47-53].

Почвенная засуха прежде всего приводит к потере воды растением, обезвоживанию клеток, что сопровождается нарушением водного режима /88/, образованием водного дефицита. В засуху снижается подвижность и скорость обновления воды всех ярусов листьев [Уланова Е с. 304 с.].

Структура воды в живой клетке подвергается непрерывным изменениям, обусловленным реакциями метаболизма [Удовенко С. 3-4..].О состоянии воды в клетке судят обычно, разделяя её на две фазы при помощи различных водоотнимающих факторов. Отнятая вода условно называется свободной, менее структурированной, более подвижной. Оставшаяся вода - связанной, более упорядоченной, прочно удерживаемой, более структурированной, менее подвижной [Удовенко.]. На выход воды из клеток влияет не только состояние воды в них и мощность водоотнимающего фактора, но и состояние (водопроницаемость) клеточных мембран.

А. М. Алексеевым [Алексеев 355 с.] в качестве показателя напряжения водного режима, способного достаточно хорошо характеризовать состояние воды в растениях, была предложена активность воды. Под активностью понимается способность вещества участвовать в химических реакциях, поверхностных явлениях, фазовых переходах, механических перемещениях.

Поскольку молекулы связанной воды имеют пониженную подвижность, их механическое перемещение затруднено, она менее интенсивно участвует в химических реакциях, является худшим растворителем, чем свободная вода. Следовательно, при равных прочих условиях связанная вода обладает меньшей активностью, чем свободная.

Различием свойств свободной и связанной воды определяется разное физиологическое значение этих водных фаз. Повышенное содержание свободной воды способствует интенсификации физиологических процессов, а связанной - повышению устойчивости к неблагоприятным факторам среды. Увеличение содержания свободной воды связано с усилением процессов роста, обмена веществ, дыхания и тем самым ведёт к повышению продуктивности растений в оптимальных условиях существования. Однако наличие большого количества свободной воды в растении может способствовать при засухе более сильному обезвоживанию, так как свободная вода испаряется легче, чем связанная.

Потеря воды тканями вызывает глубокие изменения физико-химических свойств протоплазмы, что проявляется в увеличении проницаемости её мембран, и в первую очередь плазмалеммы. Об увеличении проницаемости протоплазмы под влиянием обезвоживания даёт представление электропроводность водной вытяжки исследуемого объекта. Степень изменения проницаемости плазмалеммы (этот показатель можно назвать и "прочность клеточных структур") при обезвоживании также является критерием оценки устойчивости растений к засухе [Удовенко С. 3-4..]. Увеличение количества веществ, выделяющихся из клеток вследствие экзосмоса, является признаком слабой устойчивости организма к действию неблагоприятных факторов среды [Алпатьев 248 с. ].

Физиологические функции растительного организма тесно связаны с его морфологическими и анатомическими признаками. Характер функционирования каталитических систем, которыми располагает живая клетка, зависит от состояния морфологических структур. Вместе с тем, процессы, осуществляющиеся при участии этих систем, и природа возникающих в ходе этих процессов метаболитов непосредственно воздействуют на состояние самих структур [Сатарова. С. 28-69. ].

Обезвоживание тканей, возникающее во время засухи, изменяет ход физиолого-биохимических процессов, что в свою очередь отражается на ростовых процессах, анатомии и морфологии растения. Даже кратковременное обезвоживание уменьшает интенсивность роста растений. При этом у злаков сокращается- длительность процесса кущения, уменьшаются размеры колоса, длина листьев и междоузлий [Cooper M P. 965-984.].

Торможение ростовых процессов, уменьшение размеров вегетативных органов и прежде всего листьев является одним из первых и важнейших проявлений засухи. Кроме того, засуха ускоряет процесс старения и отмирания листьев, сокращает вегетационный период растений [Алпатьев 248 с. ].

Преждевременное пожелтение и отмирание нижних листьев или даже только падение тургора указывает на недостаточность водоснабжения растений. Недостаток воды в почве влияет на рост очередных листьев, особенно на рост листьев верхних ярусов, когда дефицит влаги в почве часто особенно велик.

Водный дефицит и завядание в разной мере влияют на физио­логическую деятельность растения в зависимости от длительнос­ти обезвоживания и вида растения. Последствия водного дефи­цита при засухах многообразны. В клетках снижается содержание свободной воды, возрастает концентрация и снижается рН вакуолярного сока, что влияет на гидратированность белков цито­плазмы и активность ферментов. Изменяются степень дисперс­ности и адсорбирующая способность цитоплазмы, ее вязкость. Резко возрастают проницаемость мембран и выход ионов из клеток, в том числе из листьев и корней (экзоосмос); эти клетки теряют способность к поглощению питательных веществ[Martennson, Rydberg, 1994, c. 13-19].

При длительном завядании снижается активность ферментов, катализирующих процессы синтеза, и повышается ферментов, катализирующих гидролитические процессы, в частности распад (протеолиз) белков на аминокислоты и далее до аммиака, полисахаридов (крахмала на сахара и др.), а также других биополиме­ров. Многие образующиеся продукты, накапливаясь, отравляют организм растения. Нарушается аппарат белкового синтеза. При возрастании водного дефицита, длительной засухе нарушается нуклеиновый обмен, приостанавливается синтез и усиливается распад ДНК. В листьях снижается синтез и усиливается распад всех видов РНК, полисомы распадаются на рибосомы и субъеди­ницы. Прекращение митоза, усиление распада белков при про­грессирующем обезвоживании приводят к гибели растения [Прокофьев, 1978, с. 3-6].

Засуха во все фазы развития приводит к нарушению или перестройке физиолого-биохимических процессов, что в конечном итоге сказывается на продуктивности. Однако наиболее уязвимо растение к действию засухи в ювенильном возрасте, в период появления и начала развития всходов, когда в молодом организме весьма интенсивно идут ростовые процессы и все обусловливающие их синтетические реакции, так как стресс прежде всего повреждает те звенья метаболизма, которые связаны с активизацией роста. Таким же уязвимым является и период формирования генеративных органов [Cooper M P. 965-984.].

Засуха приводит к адаптивным изменениям гормональной системы регуляции растений. Содержание гормонов – активато­ров роста и стимуляторов роста фенольной природы уменьшает­ся, а абсцизовой кислоты и этилена возрастает. Все это обеспе­чивает остановку ростовых процессов, а следовательно, выжива­ние растений в жестких условиях засухи. В первый период засухи стремительно возрастает содержание АБК в листьях, обеспечи­вающей закрывание устьиц, уменьшение потери воды через транспирацию [Уоринг, Филлипс, 1984, с. 15-21].

При развитии засухи АБК, активируя синтез пролина, способ­ствует запасанию гидратной воды в клетке, тормозит синтез РНК и белков, накапливаясь в корнях, задерживает синтез цитокинина, способствует переводу обмена веществ клеток в режим покоя. В условиях водного дефицита отмечаются увеличение биосинтеза и выделения этилена, у многих растений накаплива­ются ингибиторы роста фенольной природы (хлорогеновая кис­лота, флавоноиды, фенолкарбоновые кислоты). Снижение содер­жания ИУК происходит вслед за остановкой роста [Там же, с. 14-16].

Недавние исследования показали, что другие организмы и экосистемы могут также попасть под влияние засухи. Практически все исследованные таксоны растений, имеют хорошо образованный симбиоз с большим разнообразием микроорганизмов [Brundrett, 2009, c. 37–77]. Некоторые из них могут быть нейтральным или патогенным для их хозяев [de Bary, 1879, c. 301–309], в то время как другие, как известно, могут стимулировать рост растений и повысить устойчивость растений к биотическим и абиотическим стрессам [Bent, 2006, c. 225–258]. Перемена условий окружающей среды, скорее всего, могут вызвать изменения в физиологии растений и экссудацию корней. А именно изменения концентрации хемоаттрактантов или соединения сигналов, а также наличие питательных веществ [Haase, Neumann, Kania, Kuzyakov, Kandeler, 2007, c. 2208–2221]. Это приведет к изменению в составе, численности или деятельности растительных и микробных сообществ. [Drigo, Kowalchuk, van Veen, 2008, c. 667–679]. Микоризы и эндофиты а также PGPB могут применяться в качестве агентов биологических биоудобрений и фитостимуляторов в сельском хозяйстве [Lugtenberg, Kamilova, 2009, c. 541–556].

Эндофитные грибы придают конкурентное преимущество их растения-хозяина путем повышения устойчивость к экологическим стрессам [Clay, Holah, 1999, c. 1742–1744].

Ряд исследований показали, что AMГ может повысить
засухоустойчивость растений [Aug'e, 2001, c. 3–42]. Этот положительный эффект был отмечен у различных видов растений и, как сообщается,
это введет к увеличению биомассы и урожайности сельскохозяйственных культур [Al-Karaki, McMichael, Zak, 2004, c. 263–269]. Симбиоз между некоторыми штаммами AMГ и растений могут уменьшить тяжелые последствия ограниченности воды. Кроме того, некоторые AM может противостоять засухи лучше, чем другие. Таким образом, применение микоризы может быть перспективным для производительности продуктов питания под условия засухи.

1.3. Перспективы использования эндофитных бактерии рода Bacillus subtilis

Сложные организмы, к которым относятся не только животные, но и высшие растения, существуют в природе в виде многоорганизменных сообществ, что достигается обильной колонизацией макроорганизма-хозяина бактериями, грибами, вирусами и в некоторых случаях археями. Что касается растений, их здоровье и продуктивность во многом зависят от того, какие микробы и в каком количестве колонизируют поверхность и внутренние компартменты растения [Антонюк C. 6].

Жизненный цикл растений осуществляется в тесном контакте с микроорганизмами. Бактерии, в свою очередь, развили ряд стратегий, позволяющих им использовать растения как своеобразную экологическую нишу. Эти взаимоотношения в одних случаях формируются по типу антагонизма, в других – мы наблюдаем взаимовыгодное симбиотическое сосуществование, позволяющее им выжить в среде обитания.

Патогенетические взаимоотношения с растениями формируют вироиды, вирусы, бактерии и грибы. Описано около 11 тыс. заболеваний растений, вызванных 120 видами грибов, 30 типами вирусов и 80 родами бактерий.

В зоне прямого влияния растений, прилегающей к корням почве обитают ассоциативные микрорганизмы, формирующие на корнях растений сложные по таксономическому составу и структурно-функциональной организации сообщества, которые оказывают на растения полифункциональное воздействие [Бухарин 264 с.]. Изучение ассоциативных бактерий началось в 70-х годах прошлого столетия, когда было впервые установлено, что некоторые бактерии в растительно-микробных ассоциациях способны стимулировать рост и развитие растений. Это дало возможность для использования ассоциативных ризобактерий для разработки на их основе биопрепаратов и использования в сельском хозяйстве. В настоящее время спектр бактерий, оказывающих положительное влияние на растения, расширяется благодаря активным исследованиям в этой области. Но вопрос о взаимоотношениях бактерий и растений растительно-микробных ассоциациях требует фундаментального изучения.

Растительно-бактериальные ассоциации подразделяют на трофический тип, обеспечивающий питание растений, и защитный, способствующий устойчивости растений к фитопатогенным микробам и фитофагам [Проворов С. 521–525.]. При трофической ассоциации главную роль играют бактерии родов Azospirillum, Flavobacterium, Enterobacter. При защитном симбиозе ассоциантами являются Pseudomonas fluorescens, P. chloraphis, P. putida, Serratia marcestens, Bacillus subtilis [Шапошников С. 16–22.].

Аэробные спорообразующие бактерии рода Bacillus Cohn, широко используются в микробиологической и медицинской промышленности как продуценты ферментных препаратов, антибиотиков и пробиотиков. В сельскохозяйственном производстве их применение ограничивалось лишь в качестве основы инсектицидных препаратов. В последнее время, в связи с насущной проблемой перехода к биологическому земледелию, интенсивно разрабатываются методы биологической защиты растений от болезней и соответствующие биопрепараты, призванные минимизировать применение химических пестицидов. Бактерии рода Bacillus рассматриваются как перспективные агенты биологического контроля болезней растений в силу их широко распространенного природного антагонизма ко многим фитопатогенным грибам. Бактерии синтезируют цианистый водород, который лизирует часть клеточных стенок многих патогенных
грибов [Frankowski, Lorito, 2001, с. 421 – 426].В последнее десятилетие во многих ведущих агропромышленных странах были созданы и испытаны некоторые препараты на основе бацилл-антагонистов.

Bacillus subtilis ‒ грамположительная спорообразующая аэробная почвенная бактерия широко распространена в природе, благодаря способности образовывать эндоспоры и переносить неблагоприятные условия окружающей среды в течение продолжительного периода. Первоначально были описаны в 1835 Эренбергом как Vibrio subtilis, в 1872 были переименованы Коном в Bacillus subtilis. Название «сенная палочка» вид получил из-за того, что накопительные культуры этого микроорганизма получают из сенного экстракта. Является продуцентом некоторых полипептидных антибиотиков, а также ферментов (амилазы, протеазы), получаемых промышленно. Сенная палочка (Bacillus subtilis) широко распространена в природе, имеет палочковидную форму. В присутствии кислорода образует споры, что позволяет ей длительный период сохраняться во внешней среде. Высокая биологическая активность является ее отличительной особенностью. Согласно данным литературных источников, сенная палочка имеет высокую изменчивость, что затрудняет ее идентификацию по культуральным свойствам. Так, у B. subtilis отмечается до 10 типов колоний при выращивании на различных агаризированных средах [Красилышков, 1952, с. 48].

Бактерии Bacillus способны к синтезу широкого спектра антибиотических соединений и гидролитических ферментов [P.Nielsen, J.Sorensen, 1997, c. 183-192]. Могут осуществлять прямую стимуляцию роста растений за счет индукции резистентности к фитопатогенам, снижения уровня этилена, синтеза регуляторов роста. Ризобактерии улучшают фосфорное питание растений посредством гидролиза органических фосфатов под действием фосфатаз, а так же способствует фиксации атмосферного азота диазотрофами.

Показан положительный эффект бактериальных ауксинов на инициацию и удлинение корней, развитие боковых корней и корневых волосков, что может иметь значение для ускоренного роста, потребления питательных элементов и устойчивости растения к стрессам [Bais H. P P. 233–266.]. Стресс у растений сопровождается активацией биосинтеза АЦК и этилена. Аминокислота АЦК служит непосредственным предшественником при биосинтезе фитогормона этилена. Этилен вовлечен во многие звенья процессов роста и развития растений, включая прорастание семян, инициацию и удлинение тканей и органов, цветение, созревание плодов, старение тканей и реакции на стрессовые факторы. В стрессовых реакциях этилен выступает как негативный регулятор ростовых процессов [Белимов С. 23–28.]. Бактерии повышают адаптацию растений к стрессу, вызванному дефицитом влаги в почве, стимулируя рост корней и увеличивая доступ к дополнительным ресурсам находящейся в почве влаги. В этих условиях АЦК-утилизирующие бактерии способны стимулировать рост корней за счет регуляции уровня этилена. Концентрация гормона абсцизовой кислоты при этом остается высокой, что ограничивает потери воды листьями за счет транспирации [Белимов А. А 2009. 320 с.].

Внедрение штаммов эндофитных бактерий во внутренние структуры семян рассматривают как перспективный способ расширения физиологических возможностей семян. В литературе данный метод биологической обработки семян получил название биопрайминга.

В последнее десятилетие отмечается устойчивый рост применения биопрепаратов в растениеводстве в России, производственные испытания которых подтверждают их высокую экономическую эффективность. К преимуществам микробиологических препаратов в отличие от химических можно отнести безопасность использования, снижение химической нагрузки на агроценоз и ландшафт прилегающих территорий, восстановление нормальной структуры микробиоценоза обрабатываемых почв.

В связи с этим другим перспективным способом применения эндофитных бактерий растений могут стать микробиологические препараты для сельского хозяйства, поэтому их разработка и применение является весьма актуальной и своевременной [Meyer P. 188–205.].

 

 







Дата добавления: 2015-12-04; просмотров: 224. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия