Студопедия — Иногда давление на выходе из редуктора называют низким давле­нием, тогда давление на выходе из легочника можно называть окру­жающим давлением
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Иногда давление на выходе из редуктора называют низким давле­нием, тогда давление на выходе из легочника можно называть окру­жающим давлением






Глава 2.3. Баллоны и баллонные блоки

Баллоны аквалангов имеют цилиндрическую форму с закруглен­ным дном с одной стороны и вытянутой горловиной с другой сторо­ны (фото 2.6 А). Горловина снабжена внутренней резьбой, коничес­кой у российских моделей и цилиндрической — у иностранных. В эту резьбу вкручивается короткий патрубок с одним или двумя вен­тилями в случае однобаллонного блока (фото 2.6 Б) и трубка высоко­го давления, ведущая к вентилю (вентилям) в случае двух — или трех­баллонного варианта.

Материал баллонов

Современная промышленность выпускает стальные и алюминие­вые баллоны. Первые распространены шире. Основное преимущест­во стали перед алюминием — значительно большая прочность. Недо­статок стали — подверженность коррозии. Для того, чтобы замед­лить коррозионные процессы, используют различные способы:

· применение легированных сталей, т.е. с добавками других ме­таллов, преимущественно хрома и молибдена;

· покрытие внутренней и внешней поверхности баллона тонким слоем цинка;

· покрытие внешней поверхности полимерной краской, а иногда и пластиком;

· покрытие внутренней поверхности специальными вазелиноподобными смазками.

Стальные баллоны хорошего качества при правильном уходе мо­гут служить десятилетиями.

Подверженность коррозии изделий из алюминия и алюминиевых сплавов значительно ниже. Это объясняется способностью алюми­ния образовывать на поверхности оксидную пленку, предохраняю­щую более глубокие слои металла от дальнейшего окисления. Так как прочность алюминия значительно ниже, чем стали, стенки бал­лона должны быть толще, нежели стальные, рассчитанные на то же давление. Однако, алюминий почти втрое легче железа — основного компонента стали. В результате удельный вес алюминиевых или сплавных баллонов получается ниже, чем у стальных баллонов того же объема и той же прочности.

В общем и целом, стальные баллоны практичнее алюминиевых, и именно их предпочитают большинство аквалангистов. Но не будем забывать еще об одном свойстве алюминия. Он не намагничивается, не влияет на направление стрелки магнитного компаса и показания иных магнитных приборов. Поэтому, если Вам необходимо проби­раться через минные заграждения с магнитными ловушками, поль­зуйтесь алюминиевыми баллонами.

Дополнительные приспособления

Для удобства хранения и транспортировки нижняя часть балло­нов, как правило, вставляется в резиновый башмак. Переносить однобаллонник, берясь за пластиковую рукоятку, значительно удоб­нее, нежели за вентильный механизм. Рукоятки бывают цельными и складывающимися. Капроновые защитные сетки оберегают внеш­нее покрытие баллонов от повреждений, что особенно актуально при использовании баллонов в соленой воде, где любая царапина на кра­ске приводит к коррозии.

Высокое, рабочее и проверочное давление. Клеймо

Напомним, что давление воздуха в баллонах называется высоким. Максимально допустимое при эксплуатации высокое давление для данного баллонного блока именуется рабочим давлением. Перед вы­пуском с завода — изготовителя любой баллон подвергается проверке давлением в полтора раза превышающим рабочее — так называе­мым проверочным. Каждый баллон снабжен клеймом, содержащим его основные характеристики. Клеймо выбито на горловине и обяза­тельно содержит следующую информацию:

· название или фирменный знак изготовителя;

· заводской номер баллона;

· рабочее давление;

· проверочное давление;

· месяц и год изготовления и проверки;

· масса баллона (без вентиля);

· объем баллона.

Различные варианты клейм представлены на рисунке 2.4 Б, В.

На отечественных баллонах после даты изготовления через де­фис следует год следующей надлежащей проверки. На иностранных баллонах обычно выбит тип баллона, т.е. для каких целей он предна­значен.

Через пять лет после изготовления необходимо провести повтор­ную проверку баллонов. Ее осуществляют организации, имеющие на это лицензию. Проверка включает целый ряд действий: прежде все­го взвешивание баллона, осмотр его наружной и внутренней поверх­ности и гидравлические испытания проверочным давлением. Если баллон прошел проверку и признан годным к дальнейшей эксплуата­ции, проверяющая организация ставит на него клеймо, обязательно содержащее собственное название или фирменный знак, месяц и год проверки и величину проверочного давления.

Количество, форма и размер баллонов

Наиболее популярны среди ныряльщиков всего мира однобалонные комплекты емкостью 12 — 15л. Они удобны в обращении, а за­пас воздуха при давлении около 200 атм. достаточен для бездекопрессионных погружений, какие чаще всего совершают любители под­водного мира. Отечественной промышленностью выпускаются пре­имущественно двухбалонные аппараты с емкостью баллонов 7 лит­ров каждый. Таким образом, наиболее обычный российский аква­ланг — двухбаллонник общей емкостью 14л. Акваланг АВМ — 5 допу­скает разделение баллонов, и тогда один из них, снабженный венти­лем, можно использовать в одинарном варианте, однако 7 л. при дав­лении 150 или 200 атмосфер — не слишком большой запас воздуха для погружения на открытой воде. Подобные баллоны удобно ис­пользовать для занятий в бассейне. С одной стороны, 15—ти литро­вый однобаллонник немного легче 14—ти литрового двухбаллонника, с другой стороны, центр тяжести двухбаллонника расположен на несколько сантиметров ближе к центру тяжести пловца, что умень­шает инерцию его поворота в воде. Вопрос о предпочтении одно — или двухбаллонного варианта акваланга при их приблизительно рав­ном объеме не однозначен и является делом вкуса.

Если Вы достаточно опытны и собираетесь на глубокое погруже­ние с декомпрессионными паузами при всплытии (см. главу 3.4), име­ете задачу погружаться под лед, планируете исследование подвод­ных пещер или поиск сокровищ внутри затонувших кораблей, Вам полезно подумать об увеличении запаса воздуха. Для этого можно:

· Использовать баллоны, рассчитанные на большее давление воз­духа. Сегодня широко применяются баллоны с рабочим давле­нием 230 и 300 атм.;

· Использовать баллоны большего объема. Максимальный объ­ем, остающийся в разумных пределах, составляет 18л.;

· Увеличить количество баллонов. Наиболее распространенным вариантом, помимо отечественного 7+7, является 10+10 и 12+12;

Конечно, Вы можете спарить два 18 литровых баллона, рассчитан­ных на 300 атмосфер, но вряд ли это будет оправдано и целесообраз­но. Для столь серьезных задач можно использовать более компакт­ное регенеративное снаряжение, обзор которого выходит за рамки настоящей книги.

Форма баллонов

Она достаточно стандартна, но допускает ряд вариаций при оди­наковом объеме. Так, например, 12-литровые баллоны выпускают­ся в нескольких модификациях. Преимущества вытянутого баллона — в лучшей гидродинамике и более близком расположении его цен­тра тяжести к центру тяжести пловца, что, как уже упоминалось, уменьшает инерцию поворота в воде. Правда, такой баллон может создавать неудобства людям невысокого роста — им лучше подойдут баллоны более компактной формы.

Таким образом, выбор размера, количества и формы баллонов оп­ределяется стоящими перед Вами задачами и во многом — Вашим вкусом. Последнее относится также к цветам баллонов, обычно яр­ким и хорошо заметным в воде.

Вентильный механизм

Сам по себе баллон высокого давления, разумеется, не может слу­жить источником воздуха для дыхания. Первое устройство на пути воздуха из баллона — вентильный механизм, часто называемый просто вентилем (фото 2.6 Б). Последний термин представляется ме­нее корректным, так как иногда этот механизм состоит из несколь­ких вентилей, включает дополнительные устройства, а в случае двух- или трехбаллонного блока — разветвленную систему трубок высокого давления. Входной патрубок вентильного механизма имеет внешнюю резьбу, которая вворачивается во внутреннюю резьбу горловины баллона. Отечественная промышленность выпускает бал­лоны и вентили с конической резьбой, которая герметизируется спе­циальными уплотнителями (например, свинцовым гнетом), равно­мерно наносимыми на всю поверхность резьбы. Иностранные балло­ны и вентили имеют цилиндрические резьбы и уплотнение за счет кольцевой пластиковой прокладки. Вентили из баллонов выкручива­ются только при техническом освидетельствовании последних и только квалифицированными специалистами. Внутрь баллона вен­тильный механизм обращен трубкой длиной в несколько сантимет­ров, имеющей одно или несколько отверстий, иногда забранных мел­кой металлической сеткой. Такое устройство значительно уменьша­ет вероятность проникновения в воздушные пути акваланга частиц ржавчины, которые, как правило, пересыпаются по стенкам баллона. Запорные вентили имеют правую резьбу, т.е. открываются также, как и водопроводный кран, против часовой стрелки.

Один из ключевых моментов строения вентильного механизма — устройство для выхода воздуха. Оно должно быть приспособлено для удобного, быстрого и надежного крепления редуктора — первой ступени регулятора. Сегодня имеется два международных стандарта такого крепления:

· Крепление посредством струбцины носит название YOKE (англ. — скоба, струбцина) или INT.

· Крепление посредством резьбы диаметром 5/8 дюйма — DIN. В обоих случаях герметизация достигается за счет кольцевой ре­зиновой прокладки.

Соединение по типу YOKE многие аквалангисты считают более удобным в обращении, но оно более громоздко и из — за ограничений по прочности материала не рассчитано на давление более 230 атм. Соединение типа DIN позволяет достичь большей прочности и рас­считано на давление до 300 атм. Есть два стандарта резьбы DIN бал­лонов и редукторов: более короткая — для снаряжения, рассчитанного на давление до 230 атм., более длинная — до 300 атм. Смысл этих различий в том, чтобы исключить присоединение редукторов на 230 атм. к баллонам с давлением в 300 атм., так как в этом случае резино­вое уплотнительное кольцо редуктора не доходит до предназначен­ной для него поверхности на выходе из баллона. При неправильном присоединении воздух в большом количестве будет уходить по резь­бе соединения, и использование такого комплекта полностью исклю­чено. Присоединение редуктора на 300 атмосфер возможно к любым баллонам.

Подавляющее большинство современных баллонов иностранного производства приспособлено к использованию в обоих в вариантах, как YOKE, так и DIN. Механизм прост: баллон имеет выход с резьбой DIN, в которую герметично вворачивается втулка, наружная поверх­ность которой соответствует стандарту YOKE (фото 2.6 В).

Помимо международных соединений, имеется российский стан­дарт крепления редуктора на баллонах — резьба диаметром 24 мм. В последнее время некоторые производители наладили выпуск пере­ходников, позволяющих совмещать отечественные и иностранные баллоны и редукторы. Новейшая разработка отечественной про­мышленности — аппарат АВМ—12— 1 имеет соединение междуна­родного стандарта DIN.

Форма вентильных механизмов может быть весьма разнообраз­ной. В наиболее простом однобаллонном блоке имеется единствен­ный вентиль и единственный выход (фото 2.6 Б). При этом возможны различия в расположении вентиля и выходного отверстия, не играю­щие принципиальной роли. Существуют следующие варианты усло­жнения конструкции:

4- Дополнительный выход с отдельным вентилем для крепления второго регулятора. Два регулятора часто используются для большей надежности при погружениях повышенной сложно­сти, например — в пещерах, в затопленных помещениях, подо льдом или просто в холодной воде, когда есть риск замерзания редуктора или легочного автомата (см. ниже). В случае ка­кой-либо неисправности с регулятором Вы можете переклю­читься на запасной. Дополнительный выход с вентилем может быть съемным — тогда вентильный механизм комплектуется заглушкой, закрывающей место присоединения.

· Выход для присоединения второго баллона. При использовании однобаллонного блока он закрыт наглухо; чтобы добавить второй баллон, открутите заглушку и подсоедините переходник.

· В двухбаллонном блоке возможно снабжение каждого баллона отдельным вентилем; иногда имеется третий — общий — вентиль.

Механизм отдельной подачи резервного объема воздуха — ме­ханизм резерва. Он был разработан для оповещения подводни­ка об израсходовании большей части воздушного запаса. В са­мом простом и распространенном международном варианте, резервный механизм располагается после основного вентиля и представлен пружинным клапаном, соединенным со специаль­ным вентилем и имеющим два положения: открытое и закрытое. Перед погружением вентиль резерва устанавливается в за­крытое положение, при котором клапан будет пропускать воз­дух, пока его давление превышает определенную величину (как правило, 30—50 атм.); при ее достижении пружина закрывает клапан. Если Вы заметили, что подача воздуха становится за­трудненной или прекращается, переведите вентиль резерва в открытое состояние и клапан снова начнет пропускать воздух. После этого Вы знаете, что пора подниматься на поверхность. Резервные вентили большинства современных аппаратов имеют рабочий ход около 90 градусов от закрытого до открытого состояния и приводятся в движение специальной тягой, идущей с правой сторо­ны вниз вдоль баллона и заканчивающейся у его основания. Откры­тие резерва производится правой рукой перемещением тяги вниз на несколько сантиметров.

У отечественных аквалангов резервный механизм иного устрой­ства: в трубке высокого давления, соединяющей два баллона, распо­ложен клапан, перекрывающий подачу воздуха из правого баллона, когда давление в нем падает примерно до 60—ти атм. Когда иссяк­нет воздух в левом баллоне, необходимо открыть резервный вен­тиль, выпускающий остатки воздуха из правого баллона. Открывание резерва в такой конструкции сопровождается характерным звуком, слышным как на воздухе, так и в воде — звуком перепуска воздуха из правого баллона в левый до выравнивания давления ме­жду ними. Таким образом, после открытия резерва в обоих баллонах остается приблизительно по 30 атм. Вентили резерва в отечествен­ных баллонах имеют такой же рабочий ход, как и вентили основной подачи — немногим более одного оборота — и левую резьбу, т.е. в отличие от вентилей основной подачи открываются по часовой стрелке. В широко распространенных аппаратах АВМ — 5 и АВМ — 7 вентиль резерва приводится в действие тросиком, намотанным на маховик. Тросик следует вниз вдоль баллона внутри защитного ко­жуха и заканчивается грушевидной ручкой с пружинными фиксато­рами (фото 2.7 А). Для открывания резерва необходимо нажатием на фиксаторы освободить ручку и потянуть ее вниз до отказа. Такой механизм ввиду своей сложности требует тщательного регулярного ухода в виде переборки и смазки. В аппаратах серии "Подводник" применено другое конструкционное решение: акваланг "перевер­нут", т.е. его нормальное рабочее положение — вентилями вниз;

вентиль резерва размещен под правой рукой подводника и открыва­ется без каких-либо дополнительных механизмов. Очевидное не­удобство такой конструкции — необходимость использования бо­лее длинного шланга, соединяющего редуктор с легочником, и пере­ворачивания баллона при каждом его надевании.

Насколько нужен резервный запаса воздуха? Его наличие обяза­тельно при отсутствии выносного манометра, показывающего дав­ление в баллонах. Если же такой манометр есть, механизм резерва становится дублирующим устройством, информирующим подвод­ника о том, что воздух на исходе. Вы можете залюбоваться красота­ми подводного мира и забыть вовремя взглянуть на манометр, но Вы не можете не заметить окончания основного запаса воздуха. С дру­гой стороны — любой механизм занимает объем, имеет вес и требу­ет ухода. Сегодня во всем мире налицо тенденция к отказу от меха­низма резерва, по крайней мере при погружениях в обычных усло­виях.

Крепление баллонов

В подавляющем большинстве случаев акваланги надеваются за спину как рюкзаки. Существуют и другие варианты: например, при подводном скоростном плавании или подводном ориентировании единственный баллон удерживается спортсменом за вентиль впере­ди на вытянутых руках. При креплении баллона за спиной возможны три разновидности конструкции:

1. Один или два баллона крепятся с помощью ремня (иногда — двух ремней) к жилету—компенсатору. Это наиболее распро­страненный в мировой практике способ крепления. В случае двухбаллонного блока часто используется пара крепежных бол­тов. Подробнее эти механизмы разбираются в главе, посвящен­ной компенсаторам плавучести,

2. Один или два баллона таким же образом крепят к специальной анатомической спинке, снабженной плечевыми и поясными ремнями.

3. Ремни крепятся к металлическим хомутам, охватывающим бал­лонный блок. Такой способ крепления используется в большин­стве отечественных аквалангов. У них, как правило, кроме пле­чевых и поясных ремней имеются брасовые — идущие между ног подводника. Назначение брасового ремня — предотвратить смещение акваланга наверх; неудобство — необходимость предварительного расстегивания при снятии или аварийном сбрасывании грузового пояса. Хорошо подогнанный по вашей талии поясной ремень делает брасовый необязательным. Сов­ременное любительское снаряжение международного стандар­та, как правило, не предусматривает его наличие.

Глава 2.4. Регулятор

В применении к аквалангу термин "регулятор" появился в лекси­ке отечественных подводников совсем недавно. До того в русском языке не существовало единого общепринятого термина для редук­тора, легочного автомата и соединяющего их шланга. Это было дос­таточно неудобно, что и вызвало быстрое заполнение пустого места в языке, как только широкому кругу пользователей в России стало доступно иностранное снаряжение и соответствующая литература. Английское "regulator" легко русифицировалось и прижилось как в устной речи, так и в литературе.

Основная задача регулятора — понизить высокое давление пода­ющегося из баллонов воздуха до давления окружающей среды и обеспечить подводнику возможность свободного вдоха и выдоха.

Допустимо техническое решение, при котором это будет происхо­дить в одном узле и в один этап. Однако наиболее удобным оказа­лось двухступенчатое уменьшение давления. На первом этапе оно снижается до уровня, превышающего давление окружающей среды на 5— 10 атм. Это происходит в узле, именуемом редуктором (first stage). Далее воздух подается в легочный автомат (second stage), где его давление выравнивается с давлением окружающей среды. Из легочного автомата воздух подается на вдох, и через него же проис­ходит выдох.

Первые акваланги имели так называемые совмещенные регулято­ры: редуктор и легочник располагались в едином корпусе непосредст­венно на выходе из вентильного механизма аппарата. С одной сторо­ны ко рту шел гофрированный шланг вдоха, входящий в мундштуч­ную коробку с загубником, с другой — из мундштучной коробки вы­ходил шланг выдоха, следующий за спину подводника в легочный ав­томат, где заканчивался клапаном выдоха. Так устроен первый отече­ственный серийный акваланг — АВМ— 1М. При горизонтальном по­ложении такого аппарата легочный автомат располагается выше лег­ких пловца. Давление воздуха, выходящего из легочника, равно дав­лению окружающей среды, а, значит, немного меньше давления дей­ствующего на легкие. Результат — затрудненный вдох при плавании. Если в таком аппарате перевернуться на спину — воздух все время будет подаваться на вдох. Гораздо удобнее оказалось использовать разнесенные системы, в которых редуктор крепится на вентильный механизм акваланга, а легочный автомат находится непосредственно около рта подводника. Редуктор и легочник в этом случае соединены гибким шлангом промежуточного давления. Сегодня именно так уст­роены все регуляторы, выпускаемые промышленностью для широко­го применения. Они называются "двухступенчатые регуляторы с раз­несенными ступенями редуцирования", и именно с их устройством и разнообразием мы знакомим Вас в настоящей книге.

Как быть левше? Совет начинающим подводникам

В течение нескольких десятилетий вся мировая промышленность выпускала регуляторы "под правую руку": шланг низкого давления обходит тело подводника и входит в легочник с правой стороны, что делает удобным выполнение всех манипуляций с легочником именно правой рукой. С изобретением компенсатора плавучести (глава 2.8) в левую руку подводника был вложен инфлятор — деталь компенсато­ра, на которой расположены кнопки регулировки плавучести. Сов­ременная промышленность, ориентированная на максимальное удобство для пользователей, выпускает инвертируемые легочники и компенсаторы, которые могут собираться, как в обычном варианте, так и в зеркальном: шланг к легочнику — слева, инфлятор компенса­тора — справа. Вопрос в том, насколько это нужно. Когда Вы овладе­ваете техникой плавания с аквалангом, ваши руки привыкают к вы­полнению некоторых стандартных действий с легочником и инфлятором компенсатора. Трудно сказать, на какую руку ложится более сложная, требующая лучшей координации нагрузка. Если Вы левша, это совсем не значит, что необходимые навыки в стандартном снаря­жении будут даваться Вам тяжелее, чем в "зеркальном". Привыкнув к "леворукому" снаряжению, Вам будет сложнее пользоваться стан­дартным. Если Вы абсолютно уверены, что всегда будете иметь при себе собственный инвертируемый комплект и никогда не окажетесь перед необходимостью воспользоваться каким — либо другим редук­тором или компенсатором — учитесь на том снаряжении, какое вам больше нравится. Если Вы допускаете иные ситуации — с самого на­чала привыкайте к стандартному варианту. Еще раз повторим, что мы не видим в нем каких-либо неудобств для левшей.

Глава 2.5. Редуктор

Основная задача редуктора — уменьшить давление воздуха, вы­ходящего из баллонов, до давления, превышающего давление окру­жающей среды на некоторую величину, в пределах 5—10 атм. (как правило, 8 — 9).

Базовые принципы работы различных моделей редукторов мало отличаются друг от друга. Рассмотрим наиболее простую конструк­цию. Редуктор, схема которого изображена на рисунке 2.6, имеет три камеры, подвижный поршень и пружину. Форма подвижного поршня такова, что его торцевые поверхности имеют различную площадь. По­верхность меньшей площади снабжена прокладкой из полимерного материала и при опускании поршня вниз (см. рисунок) закрывает со­бой отверстие, через которое поступает воздух из баллона. Эта поверхность именуется подушкой клапана, а закрываемое ею отверстие — седлом клапана. Вместе они образуют клапан редуктора. Поверх­ность большей площади обращена в верхнюю камеру редуктора. Вну­три поршня проходит канал, соединяющий нижнюю и верхние каме­ры редуктора. Средняя камера сообщается отверстием с окружаю­щей средой. Пока баллонный вентиль закрыт, пружина удерживает поршень в верхнем положении, при котором клапан редуктора от­крыт. При открывании вентиля воздух под высоким давлением устре­мляется через открытый клапан в нижнюю камеру редуктора, из кото­рой по каналу в поршне проходит в верхнюю камеру. Давление в обе­их камерах нарастает практически одновременно. Давление в верх­ней камере начинает действовать на поршень с возрастающей силой.

Сила давления воздуха на верхнюю поверхность поршня во столь­ко же раз превышает силу, оказываемую таким же давлением на ни­жнюю его поверхность поршня, во сколько площадь верхней поверх­ности превышает площадь нижней. Таким образом, указанные силы, действующие на поршень с двух сторон, уравниваются, когда давле­ние в верхней камере значительно уступает давлению на подушку клапана. Снизу на поршень действуют еще две силы: упругости пру­жины и давления окружающего воздуха или воды. Давление воздуха в нижней и верхней камере редуктора продолжает расти до тех пор, пока увеличивающаяся сила давления воздуха на поршень в верхней камере (сверху вниз) не превысит сумму трех сил, действующих в об­ратном направлении: давления воздуха на подушку клапана, давления окружающей среды и упругости пружины. Далее происходит закры­тие клапана редуктора. В большинстве систем площади поверхностей поршня и упругость пружины подобраны таким образом, что при ра­бочем давлении в баллонах полное закрытие клапана редуктора про­исходит при давлении в верхней камере, на 8 — 9 атм. превышающем давление окружающей среды. Это давление называется промежуто­чным. На поверхности оно равно соответственно 9 — 10 атм. Значение промежуточного давления на поверхности называется установоч­ным давлением редуктора. На глубине Юм давление в средней каме­ре редуктора увеличится на 1 атм. и, соответственно, на столько же увеличится давление в верхней камере редуктора, необходимое для закрытия клапана, т.е. промежуточное. Из нижней камеры редуктора имеется выход для подачи воздуха в легочный автомат. При вдохе да­вление воздуха в нижней и верхней камерах редуктора падает и кла­пан открывается, перепуская очередную порцию воздуха в редуктор. Таким образом, последний обеспечивает подачу воздуха под давлени­ем, на 8 — 9 атмосфер превышающим давление окружающей среды. Герметизация камер в описанном редукторе достигается кольцевыми резиновыми прокладками на поршне и в местах подсоединения шлангов высокого и среднего давления.

Мы привели пример классической конструкции редуктора, про­веренной более чем тридцатилетней практикой использования. По­добные устройства называются поршневыми несбалансированны­ми редукторами поточного действия. Что это значит и какие еще бы­вают типы редукторов?

Поршневые и мембранные редукторы

Если подвижной деталью — управляющим элементом — является не поршень, а резиновая мембрана, соединенная со штоком клапана, такие редукторы называются мембранными (рис 2.7). Как правило, их устройство более сложно, они содержат больше подвижных дета­лей. Поршневые редукторы в целом более надежны и просты в тех­ническом обслуживании: замена кольцевых резиновых уплотните­лей — операция простая и быстрая. Смена мембраны — работа более сложная. Недостатком поршневого редуктора является подвержен­ность заклиниванию при образовании наледи на трущихся поверх­ностях поршня и стенки редуктора или при попадании в зазор меж­ду ними частичек грязи. Поэтому мембранные редукторы часто ис­пользуют при погружении в холодной или загрязненной воде. Более подробно этот вопрос разбирается ниже.

Поточные и противоточные редукторы (прямого и обратного действия)

В поточном редукторе клапан открывается в том же направлении, в котором через него идет воздушный поток, в противоточном — в противоположную сторону. Поршневые редукторы за редчайшим исключением всегда имеют поточный механизм, мембранные — противоточный.

 

Сбалансированные и несбалансированные редукторы

В описанном выше поточном поршневом редукторе давление воз­духа из баллонов служит одной из сил, открывающей клапан. Естест­венно, с расходом воздуха в аппарате, высокое давление падает, а значит, падает и промежуточное давление, т.к. все меньших и мень­ших усилий хватает на закрывание клапана редуктора. Результат — увеличение сопротивления дыхания при уменьшении запаса возду­ха. В редукторе с противоточным клапаном наблюдается обратная ситуация — промежуточное давление растет с падением высокого. Возможны разнообразные технические решения, исключающие влияние величины высокого давления на величину промежуточного до тех пор, пока первое превышает второе. Наиболее распростране­ны следующие.

1. Введение дополнительной поверхности поршня. Такое реше­ние, как правило, используется в мембранных редукторах. Вер­немся к схеме такового (рис. 2.7). Высокое давление действует на тарелку клапана в двух направлениях — на открытие и на за­крытие клапана. Вторая сила при этом превышает первую, так как развивается за счет давления на большую площадь. Это оз­начает, что чем ниже высокое давление, тем выше должно быть промежуточное, достаточное для закрытия клапана. Изменив форму поршня так, как показано на рис. 2.8, можно выровнять площади поверхностей, подвергающиеся воздействию высоко­го давления в сторону открытия и закрытия клапана. "Лишняя" поверхность при этом выносится в дополнительную камеру, за­полненную воздухом среднего давления. 2. Исключение воздействия высокого давления на управляющий элемент редуктора. Как правило, это решение используется в поршневых редукторах. Принципиальная схема такого реше­ния приведена на рис. 2.9. Нижняя камера здесь служит камерой высокого давления, а седло и подушка клапана меняются местами: подушка неподвижно располагается на торцевой сто­роне камеры высокого давления, а подвижным седлом служит нижняя оконечность поршня. Выход воздуха среднего давле­ния происходит из верхней камеры редуктора. При отсутствии высокого давления пружина удерживает поршень в верхнем положении — клапан открыт. При повышении давления в ниж­ней камере воздух проходит сквозь канал в поршне в верхнюю и по достижении в последней установочного давления клапан закрывается. Таким образом, полностью исключается воздей­ствие высокого давления на работу поршня. В данном случае весь поток воздуха проходит через канал в поршне, поэтому для обеспечения нормальной пропускной способности редуктора диаметр канала должен быть больше, чем в конструкции, изоб­раженной на рис. 2.6.

 

Расход воздуха

Расход воздуха — величина, характеризующая пропускную спо­собность редуктора. Расход воздуха измеряется количеством возду­ха в литрах, который способен пропустить через себя редуктор за одну минуту при постоянно открытом клапане. Эта величина во много раз превосходит реальный расход воздуха при погружении и характеризует возможную скорость прохождения воздуха через редуктор, которая должна превышать максимальную скорость по­тока воздуха, потребляемого легкими подводника при глубоком и резком вдохе. В противном случае в момент наиболее активного ды­хательного движения возрастает сопротивление дыханию. Боль­шинство современных редукторов имеют расход воздуха от 1 до 4 тыс. л/ мин.

 

Способы подсоединения редукторов к баллонам

Способы подсоединения редукторов к баллонным блокам подроб­но разобраны при описании последних. Большинство современных зарубежных производителей выпускают каждую модель редуктора как в YOKE, так и в DIN вариантах, причем они совместимы. Как пра­вило, узел крепления к баллону вкручен в редуктор с помощью стан­дартной резьбы, так что Вы можете вывинтить из редуктора струб­цину (YOKE) и вкрутить на ее место адаптер варианта DIN и наобо­рот. Впрочем, лучше не делать этого самостоятельно, а обратиться к квалифицированным специалистам. Так или иначе, приобретая ре­дуктор одного стандарта и адаптер другого, Вы можете пользоваться любым из них по своему усмотрению. Некоторые отечественные ре­дукторы имеют свой стандарт присоединения к баллонам. При необ­ходимости возможно использование дополнительных переходников с баллонов международных стандартов на наши редукторы и наобо­рот, но подобные переходники увеличивают количество соединений и размеры конструкции. Новейшая разработка отечественной про­мышленности — аппарат АВМ— 12—1 — имеет международное со­единение типа "DIN".

Выходы из редуктора

Выходы из редуктора часто именуются портами. Наиболее рас­пространенными вариантами, отвечающими современным между­народным требованиям, являются редукторы с 1 — 2 выходами высо­кого давления и 3 — 4 выходами среднего давления. Большинство ми­ровых производителей соблюдают единые стандарты обозначений и резьб портов. Порты высокого давления маркируются "HP" (high pressure) и имеют внутреннюю резьбу диаметром 7/16" (7/16 дюй­ма). Часто маркировка "HP" заменяются указанием высокого давле­ния в атмосферах на которое рассчитан редуктор, например, 200 или 300. Наличие одного выхода высокого давления обязательно для сов­ременных редукторов и необходимо для подключения выносного — расположенного на гибком шланге — манометра высокого давления (см. главу 2.10). Второй выход высокого давления может предназна­чаться для независимого подсоединения датчика давления индивиду­ального компьютера (глава 2.10). Выходы среднего давления как правило лишены маркировки и имеют стандартную внутреннюю резьбу 3/8" (иногда — 1/2"). Минимальное количество портов сред­него давления — три — предназначается для подсоединения:

· легочного автомата;

· компенсатора плавучести;

· запасного легочника или клапана поддува сухого костюма.

· Четыре порта среднего давления позволяют подключать запасной легочник и поддув сухого костюма одновременно.

Редукторы комплектуются заглушками к незадействованным портам.

Редуктор нового отечественного аппарата АВМ—12—1 — имеет 4 порта среднего давления международного стандарта — с внутрен­ней резьбой 3/8". Хорошо известные российским подводникам реду­кторы типа АВМ—5 имеют лишь один выход среднего давления, предназначенный для легочного автомата и имеющий внешнюю резьбу диаметром 18 мм. Выход высокого давления в этом редукторе отсутствует: укомплектованные ими акваланги либо имеют систему предупреждения подводника о скором окончании запаса воздуха в виде резервного механизма, как аппараты АВМ — 5 и АВМ — 7, либо в дополнение к системе резерва снабжены выносным манометром, от­ходящим прямо от баллонного блока, как в акваланге "Подвод­ник—2". Редуктор аппарата "Подводник—4" имеет выход высокого давления с внешней резьбой 14 мм и укомплектован выносным мано­метром. Выход среднего давления в этой модели также единствен­ный. Естественно, до начала свободного поступления в нашу страну снаряжения международных образцов, отечественные подводни­ки—умельцы создали различные варианты дополнительных портов для подключения жилета—компенсатора плавучести. Наиболее уда­чный вариант — подсоединение к резьбе, в которую должен вкручи­ваться предохранительный клапан редуктора, специального тройни­ка, имеющего резьбу для подсоединения предохранительного клапа­на и дополнительную резьбу для выхода среднего давления к компен­сатору. Возможен также "четверник" — с еще одним портом для за­пасного легочного автомата.

Как правильно задействовать порты редуктора?

Ответ прост: в стандартном снаряжении шланги к основному и за­пасному легочному автомату лучше всего располагать справа, а шланги поддува компенсатора и сухого гидрокостюма — слева (рис. 2.10, фото 2.8). Шланг высокого давления на манометр или компью­тер подсоединяется, как правило, с левой стороны. Во многих ино­странных редукторах есть механизм, позволяющий по вашему жела­нию выбрать оптимальное направление выходов шлангов среднего давления: та часть корпуса, на которой располагаются порты средне­го давления может поворачиваться вокруг своей продольной оси. Та­кой механизм называется турельчатым, или карусельным (swivel).

Общая компоновка редуктора

Наиболее распространенные варианты конструкций междуна­родного стандарта представлены на фото 2.9. Форма корпуса редук­торов разнообразна, но более — менее приближена к цилиндричес­кой, так как внутри любого редуктора имеется либо цилиндрический поршень, либо дисковидная мембрана. Продольная ось корпуса ре­дуктора либо параллельна, либо перпендикулярна оси крепления к аквалангу. В первом случае вся конструкция получается более ком­пактной. Именно так устроены недорогие редукторы, сочета







Дата добавления: 2015-12-04; просмотров: 233. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия