Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула для оценки погрешности численного дифференцирования по формуле Ньютона





При численном дифференцировании таблично заданной функции y = f (x) возникают погрешности двух типов:

§ погрешности усечения

§ погрешности округления

При оценке погрешности усечения, оценив на практике предполагают, что f (x) не имеет быстро колеблющихся составляющих (период которых не превосходит h). При этом условии величина разностей определенного может свидетельствовать о качестве приближения функции f (x) интерполяционным многочленом подходящей степени. Если разности порядка m различаются меньше, чем на величину погрешности их округления, то считают, что эти разности практически постоянны и погрешность усечения не превосходит единицы младшего разряда значений . С уменьшением шага расчета погрешность усечения убывает .

Погрешности округления обратно пропорциональна шагу расчета h в формулах для первой производной, обратно пропорциональна h 2 в формулах для второй производной и так далее. Поэтому при уменьшении шага расчета h погрешность округления увеличивается. Для оценки используются правила из теории погрешности .

Обобщения погрешность вычисления производной может рассматриваться как сумма погрешности усечения и погрешности округления так как с уменьшением порядка интерполяции погрешность усечения убывает, а погрешность округления возрастает, то существует оптимальный шаг расчета, при котором полная погрешность минимальна:

.

 

9. Как влияет на точность численного дифференцирования величина шага h?

В формулах численного дифференцирования с постоянным шагом значения функции делятся на , где -порядок вычисляемой производной. Поэтому при малом неустранимые погрешности в значениях функции оказывают сильное влияние на результат численного дифференцирования. Таким образом, возникает задача выбора оптимального шага , так как погрешность собственно метода стремится к нулю при , а неустранимая погрешность растет. В результате общая погрешность, которая возникает при численном дифферецировании, может неограниченно возрастать при . Поэтому операцию численного дифференцирования считают некорректной.

 

 







Дата добавления: 2015-06-15; просмотров: 1272. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия