Определение температуры гидратообразования.
Температура гидратообразования Огидр) определяется по равновесным кривым в зависимости от давления газа в первой, во второй ступенях сепарации или в пласте. Коэффициент а определяют по графику давления и температуры газа в первой ступени сепарации при впрыске метанола в шлейф; по давлению и температуре газа во второй ступени сепарации - при впрыске метанола во вторую ступень сепарации; по давлению и температуре газа в пласте - при впрыске метанола в скважину. Таким образом, все составляющие общей величины впрыскиваемого метанола, необходимого для технологических нужд, известныПоследовательность определения температуры гидратообразования сводится к следующему. По известному составу, в котором содержится азот, углекислый газ, сероводород и остальные компоненты, присущие природному газу (СН4, С2Н6, С3Н8, i - C4H10, n - C4H10, i - C5H12 и п - С5Н ] 2), при заданном давлении рассчитывают относительную плотность газа. Затем по рис. 14.6 находят точку пересечения линий, соответствующих заданному давлению и содержанию сероводорода. От точки их пересечения перпендикулярно изобаре с заданным давлением проводят прямую до пересечения с линией определенной относительной плотности в нижней части графика. Точка их пересечения является началом условной линии, которую необходимо провести параллельно наклонным кривым, представленным в нижней части графика. Точка пересечения этой условной наклонной линий с осью абсцисс соответствует температуре гидратообразования газа данного состава.
С повышением температуры гидратообразования повышаются температурные уровни двухступенчатого цикла (см. рис. 9 - 5), уменьшаются работа дополнительного холодильного контура и теплопритоки из среды. Кроме того, с повышением температуры ВИТ уменьшается нагрузка (а следовательно, и поверхность) пред-охладительного теплообменника. Энергозатраты основного контура кристаллогидратных и замораживающего опреснителей примерно одинаковы.
При достижении температуры гидратообразования жидкие газы, соединяясь с водой, образуют твердые гидратные пробки. Наличие этих пробок приводит к уменьшению пропускной способности продуктопро-водов, необходимости введения дорогостоящих антигидратных ингибиторов, а иногда и к аварии.
Величина снижения температуры гидратообразования газа АГ зависит от расхода вводимого в поток газа ингибитора. Чем больше вводят ингибитор, тем больше получают величину ЛГ. Очевидно, что для экономии ингибитора его расход необходимо поддерживать таким образом, чтобы температура гидратообразования газа в месте вывода отработанного раствора ингибитора была несколько ниже температуры газа. Избыточного расхода ингибитора нет, если граничная температура гидратообразования (в присутствии ингибитора) поддерживается равной температуре газа. Последняя в процессе добычи газа может быть переменной во времени в зависимости от температуры окружающей среды, расхода газа и других технологических параметров. Поэтому расход ингибитора необходимо изменять так, чтобы температура гидратообразования газа как бы следила за изменяющейся температурой газа. Эту задачу и решает предлагаемая автоматическая система управления.
3 ОПРЕДЕЛЕНИЕ РАСХОДА ИНГИБИТОРА ГИДРАТООБРАЗОВАНИЯ
Вводимый в систему ингибитор гидратообразования расходуется для насыщения газовой фазы и растворяется в водном и углеводородном конденсатах, образовавшихся при изменении термодинамических параметров системы. Следовательно, количество ингибитора, необходимого для предупреждения гидратообразования, может определяться по уравнению: G = gж + gг + gк, (1.9)
где gж – количество ингибитора, необходимого для насыщения жидкой фазы, кг/1000 м3; gг – количество ингибитора, необходимого для насыщения газовой фазы, кг/1000 м3; gк – количество ингибитора, растворенного в жидкой углеводородной фазе, выделяемой из 1000 м3 газа, кг.
Значение gж определяют по уравнению: gж = W·X2/(X1 – X2), (1.10)
где Х1 и Х2 – массовая доля ингибитора в исходном и отработанном растворах;
W – количество воды в жидкой фазе на расчетной точке, кг/1000 м3.
Массовая доля ингибитора в исходном растворе (Х1) относится к известным параметрам системы, а в отработанном растворе (Х2) зависит от требуемого понижения температуры гидратообразования газа, природы самого вещества и определяется по формуле: Х2 = ,
где М – молекулярная масса ингибитора; К – коэффициент зависящий от типа раствора.
Для метанола М = 32, К = 1220.
Если известна величина Х2, то величину понижения температуры гидратообразования для ингибитора определяют по формуле:∆t = ,
Значение необходимой температуры понижения гидратообразования рассчитывают по формуле: ∆t = Тг – Тр, (1.13)
где Тг – температура гидратообразования газа, ˚С; Тр – температура газа в расчетной точке, ˚С.
После определения ∆t находят значение Х2.
Полученное значение Х2 соответствует такому раствору, который имеет температуру застывания ниже, чем температура в расчетной точке. Этот раствор не образует гидратов с компанентами газа.
Количество воды в жидкой фазе определяют по формуле: W = b1 – b2 + ∆b, (1.14)
где b1 и b2 – влагосодержание газа в начальной и расчетной точках системы соответственно, кг/1000 м3; ∆b – количество капельной влаги в газе в начальной точке системы, кг/1000 м3.
При отсутствии фактических данных о количестве капельной влаги в системе, расход ингибитора, необходимого для насыщения газовой фазы, принимают на 10…20 % больше его расчетного значения.
Количество ингибитора, необходимое для насыщения газовой фазы определяют по формуле:Gг = 0,1∙а∙Х2, (1.15)
где а – отношение содержания ингибитора, необходимого для насыщения газовой фазы, к концентрации метанола в отработанном растворе.
Для упрощения расчета необходимого количества ингибитора гидратообразования, по представленной выше методике, проведем его с применением ПЭВМ с помощью программы представленной в приложении В. Расчет проведен при тех же условиях и данных, что и при гидравлическом и тепловом расчете шлейфа. Для летних условий расчет не проводился т.к. в летнее время, по расчетам, образование гидратов не наблюдается.
Результаты расчета расхода ингибитора приведены в таблице 1.2.
Таблица 1.2 – Результаты расчета расхода метанола
Расход газа Qг, тыс.м3/сут.
| Длина шлейфа L, км
| Температура окружающей среды tос., °С
| Расход ингибитора G, кг/тыс.м3
|
5,71
|
| - 35
| 0,308
|
| 0,221
|
2,85
|
| - 35
| 0,041
|
| - 35
| 0,402
|
| 0,341
|
По результатом расчета видно, что в зимнее время удельный расчет ингибитора сильно зависит от длины шлейфа. Это явление напрямую связано с понижением температуры газа вследствии теплопередачи окружающей среде. Также можно сделать вывод, что с увеличением дебита газа удельный расход ингибитора уменьшается. Это связано с тем, что увеличивается скорость газа и он находится меньшее время в контакте с окружающей средой через стенки труб. Уменьшение времени контакта приводит к уменьшению перепада температуры по длине трубопровода, что подтверждается расчетными данными.