Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Случайные погрешности и их свойства. Средняя квадратическая погрешность





Теоретические исследования и опыт измерений показывают, что случайные погрешности обладают следующими основными свойствами:

- при определенных условиях измерений, случайные погрешности по абсолютной величине не могут превышать известного предела;

- малые по абсолютной величине погрешности появляются чаще, чем большие.

- положительные погрешности встречаются так же часто, как и отрицательные;

- среднее арифметическое из всех случайных погрешностей равноточных измерений одной и той же величины при неограниченном возрастании числа измерений n стремится к нулю, т.е.

, (5.2)

где [ ] – обозначение суммы.

Формула (5.2) выражает свойство компенсации случайных погрешностей. Этим свойством обладает и сумма попарных произведений случайных погрешностей

, (i, j = 1, 2, 3... n; i ¹ j). (5.3)

Формула Гаусса предполагает точное значение измеряемой величины.

Так как величины всегда измеряют несколько раз, то всегда можно найти арифметическую средину:

Можно также получить величины уклонений каждого измеренного значения от Х0, т.е получить ряд равенств:


Вычтем из уравнения (2) уравнение (1), получим:

В левых частях уравнений стоят истинные ошибки арифметической средины. Заменим их СКО арифметической средины:

Возведем в квадрат и просуммируем:


Разделим обе части на n:

Формула Бесселя:

 







Дата добавления: 2015-06-15; просмотров: 744. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия