Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показательная форма комплексного числа. Логарифм комплексного числа. Возведение комплексного числа в комплексную степень





· Формула Эйлера.

Пусть - некоторое комплексное число. По определению полагают, что

Если число - действительное, то есть , то

Если число - чисто мнимое, то есть , то

Таким образом, имеем равенство

которое называется формулой Эйлера.

· Показательная форма записи комплексного числа.

Рассмотрим произвольное комплексное число, записанное в тригонометрической форме: . По формуле Эйлера

а тогда

Следовательно, любое комплексное число можно представить в так называемой показательной форме:

·
Натуральным логарифмом комплексного числа r (cosj + i sinj) называется показатель степени, в которую надо возвысить e, чтобы получить логарифмируемое число. Обозначив натуральный логарифм фимволом Log, можно сказать, что равенство

 

Log [ r (cosj + i sinj)] = x + yi

равносильно следующему:

 

ex+yi = r (cosj + i sinj).

Последнее равенство можно написать так:

 

ex(cos y + i sin y) = r (cosj + i sinj),

откуда, сравнивая модули и аргументы, получим:

 

ex = r, y = j + 2kp (k = 0, ±1, ±2,...),

т.е.

 

x = log r и x + yi = log r + (j + 2kp)i

и окончательно

Log[ r (cosj + i sinj)] = log r + (j + 2kp)i, (22)

т.е. натуральный логарифм комплексного числа равен комплексному числу, вещественная часть которого есть обычный логарифм модуля, а мнимая часть представляет собою произведение i на одно из значений аргумента.
Мы видим, таким образом, что натуральный логарифм любого числа имеет бесчисленное множество значений. Исключение составляет лишь нуль, логарифм которого не существует.

 

Возведение комплексных чисел в комплексную степень базируется на простой формуле a^b=exp(b ln a)
в частности, (i√5)^(i+1)=exp(i√5 ln(i+1)) = exp(i√5 · (ln √2 + i π/4)) =
= exp (-√5 π / 4 + i √ 5 ln √2) = exp(-√5 π/4) (cos (√5 ln √2) + i sin (√5 ln √2))
возведение в степень на множестве комплексных чисел определено неоднозначно, так как значение ln a определено с точностью до слагаемого i 2π

Экспоне́нта — показательная функция , где е — Число Эйлера ().







Дата добавления: 2015-03-11; просмотров: 1112. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия