Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификация и свойства ошибок геодезических измерений





При выполнении геодезических работ измеряют углы, длины, превышения, площади и т.п. Процесс измерений неизбежно сопровождается ошибками.

Истинной ошибкой D называется разность между результатом измерений l и истинным значением Х измеряемой величины: D =l - Х. По этой формуле вычисляются, например:

- угловая невязка в замкнутом

- невязка приращений по оси Х теодолитном

- невязка приращений по оси У ходе

- высотная невязка замкнутого нивелирного хода

Все ошибки подразделяются на три группы: грубые, систематические и случайные.

Грубые ошибки - промахи, они должны быть устранены путем контрольных измерений и вычислений.

Систематические ошибки подразделяются на постоянные (например, неучет поправки за компарирование ленты) и односторонне действующие (например, неучет поправки за наклон при измерении длин линий). Они могут быть устранены путем введения поправок и применения соответствующих методик измерений.

Случайные ошибки - неустранимы, их влияние может быть уменьшено путем повышения качества приборов.

Свойства случайных ошибок

1. При данных условиях измерений случайные ошибки по модулю не могут превосходить известный предел.

2. Малые по модулю положительные и отрицательные ошибки равновозможны, причем малые ошибки появляются в измерениях чаще, чем большие.

3. Среднее арифметическое из случайных ошибок равноточных измерений одной и той же величины стремится к нулю при неограниченном возрастании числа измерений (свойство компенсации):

, .

Покажем свойства случайных ошибок на графике. Пусть некоторая величина измерена n раз (при n ® ¥;). Нанесем на график результаты измерений l1, l2 , l3 ,…, ln .

 

Из графика видно, что результаты измерений распределены между двумя экстремальными значениями l1 и l2 . Точка О (точка наибольшей концентрации) расположена примерно посредине отрезка l1l2. Если величина «начало-О» равняется истинному значению измеряемой величины X, то разности D i = li - Х дадут истинные случайные ошибки - положительные или отрицательные.

Но истинное значение измеряемой величины бывает известно очень редко, поэтому за вероятнейшее (наиболее надежное) значе-ние измеряемой величины принимается среднее арифметическое, равное сумме результатов измерений, разделенной на их число: .

При n ® ¥;, X стремится к истинному значению измеряемой величины.

 

Разности vi = li - Х называются вероятнейшими ошибками измерений, - это отклонения результатов измерений от простой арифметической середины. Если сложить почленно все разности vi, то получим [ v ] = [ l ] - nX, но [ l ] = nX, отсюда [ v ] = 0, то есть алгебраическая сумма вероятнейших ошибок равна нулю. Это условие служит контролем правильности нахождения простой арифметической середины Х и вероятнейших ошибок vi.

При многократном измерении одной и той же величины для оценки точности отдельного измерения применяется формула Бес-селя, по которой вычисляют среднюю квадратическую ошибку т: .

Случайные ошибки подчиняются нормальному закону распре деления Гаусса. На основании этого закона установлено, что из 100 ошибок лишь 30 по модулю больше или равны т, 5 ошибок больше или равны , и только 3 ошибки из 1000 больше или равны . Поэтому на практике за предельную ошибку принимают или .

Средняя квадратическая ошибка M простой арифметической середины равна частному от деления т на корень квадратный из числа измерений n:

.Таким образом, обработка ряда равноточных измерений одной и той же величины заключается в определении ее вероятнейшего значения X, точности т отдельного измерения и точности М полученного вероятнейшего значения.

Относительной ошибкой называется отношение абсолютной ошибки М к величине X измеряемого объекта: .

Относительной ошибкой удобно характеризовать точность результатов измерений длин линий, площадей, объемов.

Средняя квадратическаяошибка функции применяется для оценки точности определяемой величины, полученной по результатам измерений других величин. Например, получить объем тела можно, измерив его длину, ширину и высоту.

В общем виде среднюю квадратическую ошибку функции независимых переменных z = f (x, y,..., t) вычисляют по формуле:

,де выражения в скобках представляют собой частные производные.

Примеры:1. L = l1 - l2 + l3. .

2. Д = kn, где k – const. mД = kmn .

3. F = a ´ b. .

4. i = h/d. .

Двойные измерения одинаковой точности имеют широкое распространение на практике. Так, длины измеряют в прямом и обрат-ном направлениях, превышения - при двух горизонтах инструмента или по двусторонним рейкам, углы - двумя полуприемами и т.п. Имея большое количество разностей таких однородных измерений, можно определить среднюю квадратическую ошибку отдельного измерения: m = ,

где di = li ’- li - разности двойных измерений одной и той же величины; n - количество таких разностей.

Для исключения влияния систематических ошибок применяется формула: , где .

Неравноточные измерения встречаются на практике тогда, когда одна и та же величина измерена несколько раз, но в различных условиях, приборами различной точности, наблюдателями различной квалификации и т.д. Здесь надежность полученных результатов измерений не одинакова и оценивается математически величиной, называемой весом: ,где c - число произвольное.

 

За вероятнейшее значение из ряда неравноточных измерений одной и той же величины принимается весовое среднее, равное сумме произведений каждого измерения на его вес, разделенной на сумму весов:

,где li - результаты измерений; pi - веса измерений.

Оценку точности неравноточных измерений производят по формулам: , где ni = li - x0 и M0 = .

В этих формулах m - средняя квадратическая ошибка единицы веса; ni - вероятнейшие ошибки; pi - веса отдельных измерений; M0 - средняя квадратическая ошибка весового среднего.

 

 







Дата добавления: 2015-06-15; просмотров: 1227. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия