Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Первичная обработка статистической информации





Для малых выборок найти точечные оценки 1. Выборочное среднее и 2. Выборочная дисперсия . Исправленная выборочная дисперсия является состоятельной и несмещенной оценкой генеральной дисперсии и вычисляется по формуле . 3. Исправленное выборочное среднее квадратическое отклонение .

Для большой выборки сначала составим группированный статистический ряд. Найдем крайние элементы выборки: и . Разобьем полученный промежуток на равных интервалов, вычислив по формуле Старджесса . Для =100 получится =8. Найдем длину каждого интервала = Границы интервалов определим по формуле . Во всех вычислениях сохранять 3 знака после запятой. Подсчитаем интервальные частоты: - число элементов выборки, попавших в интервал . Элемент выборки, находящийся на границе интервалов, будем относить к правому интервалу. . Значения всех элементов выборки, попавших в интервал , будем считать равными координате середины интервала .В таблице приведем результаты первичной обработки статистических данных.

Номер интервала Границы интервала Частоты Относительные частоты Приведенные частоты Середина интервала Ординаты точек кривой Гаусса
               

Выборочное среднее: Исправленное выборочное среднее квадратическое отклонение:

Построим гистограмму приведенных частот На одном чертеже с гистограммой построим кривую Гаусса для генеральной совокупности , заменив неизвестные значения генерального среднего и генерального среднего квадратического отклонения их оценками и . Ординаты точек кривой Гаусса можно вычислить, используя таблицу значений функции (Гмурман, приложение 1): . На том же чертеже построим график плотности равномерного распределения Построить доверительные интервалы для неизвестного значения генерального среднего и исследовать зависимость интервальных оценок от объема выборки и доверительной вероятности . - точность интервальной оценки. - квантиль порядка для распределения Стьюдента с степенью свободы. Таблица находится в приложении 3 книги Гмурмана.

Сравнить доверительные интервалы для одинаковой доверительной вероятности 0,95 и разных объемов выборки =10 и =100.

Сравнить доверительные интервалы для различных доверительных вероятностей 0,95; 0,99 и 0,999 и одинаковых объемов выборки =100.







Дата добавления: 2015-03-11; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия