Свободные радикалы
Под свободным радикалом понимают промежуточные частицы (атомы, молекулы, ионы), имеющие один или более неспаренных электронов, способных к образованию химической связи (Н, Cl, СН3, ОН, СН2, NO2, O и др.). Радикалы, имеющие заряд, называются ион-радикалами, например, СН+. Ниже показаны главные процессы радиационной химии, приводящие к образованию свободных радикалов: - диссоциация возбужденных молекул;
- ион-молекулярные реакции; С6Н12+ + С6Н12+ С6Н11 + С6Н13+ (3. 20) - диссоциативный захват электрона; ССl4 + е- ССl3 + Сl- 3. 21) Следует подчеркнуть, что образование нового свободного радикала в соответствии с принципом сохранения спина имеет место во всех реакциях, протекающих с участием одного свободного радикала, например: R + > С=С < R - С - С. (3. 22) Гибель свободных радикалов происходит в реакциях рекомбинации, диспропорционирования, переноса электрона, простого и диссоциативного присоединения. Рекомбинация и диспропорционирование радикалов принадлежат к числу наиболее распространенных реакций при радиолизе воды и органических соединений. Реакции рекомбинации радикалов с образованием молекул являются энергетически выгодными процессами, энергии активации таких реакций близки к нулю. В процессе рекомбинации выделяется энергия, эквивалентная энергии разрыва возникающих связей (например, С2Н5 - С2Н5). Если радикалы при этом унесут дополнительную энергию возбуждения, то суммарная выделенная энергия может быть достаточна для повторного разрыва молекулы на радикалы. Такой процесс имеет большую вероятность для двухатомных молекул в газовой фазе. Для стабилизации образующейся при рекомбинации молекулы от нее необходимо отвести избыточную энергию. Это оказывается возможным при наличии третьего участника, который воспринимает избыточную энергию: Н + Н + М Н2 + М* (3. 23) Роль третьего тела играет также и свободная поверхность в реакционной зоне (например, стенки реакционных аппаратов). В сложных молекулах избыточная энергия перераспределяется по связям и ее локализация на одной связи маловероятна. В жидкостях дополнительно имеется возможность передачи энергии при столкновениях, и распад продукта реакции не наблюдается. Энергия активации реакции диспропорционирования несколько выше, чем соответствующее значение реакции рекомбинации. Для радикалов рекомбинация преобладает над диспропорционированием. Лишь только в случае крупных радикалов вследствие пространственных затруднений диспропорционирование может играть основную роль. Таким образом, свободные радикалы в облучаемых системах претерпевают разнообразные превращения, приводящие к возникновению большого набора стабильных (конечных) продуктов даже в случае радиолиза сравнительно простых систем.
|