Электроны и ионы
Появляющийся в первичном акте ионизации электрон обладает достаточно большой энергией, которую он может растратить на ионизицию и возбуждение еще нескольких молекул среды. При этом при последовательных ионизациях его энергия уменьшается до Еo, являющейся пороговой для электронного возбуждения молекул среды. Электроны с энергией Е, лежащей в диапазоне Еo > Е > kT (kT - энергия теплового движения молекул среды), называют электронами недовозбуждения. Эти электроны, двигаясь в среде, продолжают терять свою энергию. При этом механизм потерь зависит от природы и агрегатного состояния среды. Полагают, что в газах - это в основном упругое рассеяние, в жидкой фазе - дипольная релаксация, возбуждение колебаний водородных связей и др. За счет указанных процессов энергия электронов становится близкой или равной энергии теплового движения молекул среды. Такой электрон называют термализованным, а сам процесс замедления электрона до этой энергии - термализацией. В газах при небольших давлениях (малая частота столкновений) электроны за время торможения уходят на значительное расстояние от материнских ионов, становятся от них независимыми и могут принимать участие в различных химических реакциях. В жидкостях длина термализации значительно меньше, чем в газах, и электрон за время замедления часто не успевает уйти из сферы действия кулоновского поля материнского иона и притягивается к нему. При этом происходит рекомбинация. Уход электрона из сферы действия кулоновского поля материнского иона может произойти в том случае, когда электрон удаляется от него на такое расстояние rk (критический радиус или радиус Онзагера), на котором энергия кулоновского взаимодействия меньше или равна энергии теплового движения молекул среды: (е2 / ст rk) kT, (3. 7) где ст - статическая диэлектрическая постоянная среды. Из приведенного неравенства видно, что для полярных жидкостей уход электрона от материнского иона значительно более вероятен, чем для неполярных. В полярных жидкостях (спирты, вода и др.) ушедшие от материнского иона термализованные электроны могут стабилизироваться за счет сольватации по следующему механизму. Термализованный электрон, который на этой стадии рассматривается как "сухой" (квазисвободный электрон с высокой подвижностью), захватывается структурной полостью жидкости ("мокрый" электрон) и вызывает электронную поляризацию окружающих молекул. Взаимодействие электрона с диполями среды приводит к ориентации последних по отношению к электрону. В конечном итоге образуется простейший анион - сольватированный электрон (eсольв), в котором электрон является общим для нескольких молекул матрицы. Для электрона во всех полярных жидкостях характерны реакции захвата (прямое или диссоциативное присоединение).
Эффективность этого процесса зависит от энергии сродства к электрону взаимодействующей с ним частицы. Для воды и спиртов известна реакция димеризации:
Образующиеся в первичных актах ионизации и автоионизации положительные ионы, как правило, несут на себе дополнительную энергию возбуждения, величина которой может быть в 1, 5-2 раза выше первого потенциала ионизации. Избыточная энергия молекулярного иона может теряться при высвечивании или колебательной релаксации. Однако часто, особенно в газах, молекулярный ион распадается с отщеплением радикала или молекулы, например: С4Н10+ С3Н7+ + СН3 (3. 10) С2H5+ С2Н3+ + Н2 (3. 11) В конденсированной фазе избыток энергии первичного иона может быть легче растрачен на колебательную релаксацию, ион-молекулярные и другие реакции, чем в газе. Ионы могут вступать также в ион-молекулярные реакции - в чрезвычайно быстрые процессы, не требующие энергии активации. Наиболее распространенным типом ион-молекулярной реакции является реакция переноса заряда: A+ + В A + B+, (3. 12) часто сопровождающаяся диссоциацией иона В+, например: Ar++CH4 Ar+CH4+ Возможны также ион-молекулярные реакции с переносом атома водорода: СН4+ + СН4 С2Н5+ + СН3 (3. 14) Н2О+ + Н2О = Н3О+ + ОН, (3. 15) а также реакции с переносом протона и молекулярного водорода.
|