Радиолиз экстракционных систем
Среди промышленных методов переработки отработавшего ядерного топлива доминирующее место занимает экстракция - избирательное извлечение ионов металлов из водных растворов органическими растворителями. Целью этого процесса является обеспечение не менее 99,9 % извлечения урана и плутония из раствора отработавшего ядерного топлива при коэффициенте очистки этих металлов от осколочных радионуклидов не менее 107 - 108. Схема экстракционной переработки отработавшего топлива приведена на рис. 7.2 и включает следующие блоки: накладки (статические или динамические), расслаивание, реэкстракция и промывка экстрагента для повторного использования. Эта схема - общая для любого экстракционного процесса. Особенности экстракции в радиохимической промышленности обусловлены тем, что экстракционные системы подвергаются радиационному воздействию. В результате этого воздействия (главным образом - и -излучения осколочных радионуклидов) в органической и водной фазах протекают радиационно-химические превращения, приводящие к изменению исходного состава системы и накоплению продуктов радиолиза. Это может оказывать заметное влияние на основные характеристики экстракционного процесса: 1) cнизить "емкость" экстрагента, т. е. полноту извлечения целевых продуктов (урана и плутония)в результате ухудшения комплексующих свойств экстрагента; 2) ухудшить селективность, т. е. очистку урана и плутония от осколочных радионуклидов в результате изменения валентного состояния ионов; 3) изменить гидродинамические параметры, такие как вязкость органической фазы, межфазное поверхностное натяжение (характеризует эффективность расслоения фаз), 4)привести к появлению третьих фаз ("медуз"), осадков и т. д. Для использования в радиохимической промышленности предлагались многие экстрагенты: алкил- и арилароматические амины различного строения, эфиры фосфорной кислоты и др. В качестве разбавителей испытывали керосин, синтин, смеси углеводородов, индивидуальные углеводороды и галогенорганические соединения. Однако в современной мировой практике в радиохимической промышленности в Рис. 7.2. Схема экстракционного разделения раствора отработавшего ядерного топлива. широком масштабе используются в качестве экстрагента только н-трибутилфосфат (ТБФ), а в качестве разбавителя - специальные смеси алифатических углеводородов С11 - С15 . Это обусловлено несколькими причинами. Во-первых, ТБФ относительно дешев и доступен. Во-вторых, он имеет высокую селективность по отношению к урану и плутонию по сравнению с осколочными радионуклидами и достаточную экстракционную способность, дающую возможность использовать его в виде раствора в разбавителе (обычно не более 30%) для извлечения урана и плутония из разбавленных азотнокислых растворов облученного топлива без высаливателей. В-третьих, ТБФ химически стоек и обладает свойствами (плотность, вязкость, коэффициент поверхностного натяжения), способствующими быстрому разделению фаз и обеспечивающими пожаровзрывобезопасность процесса (низкая летучесть, высокая температура вспышки). Упомянутые смеси углеводородов по гидродинамическим характеристикам наиболее близки ТБФ, достаточно радиационно стойки и обладают высокой температурой вспышки. При действии ионизирующего излучения ТБФ разлагается с образованием дибутилфосфорной (НДБФ), бутилфосфорной (H2МБФ) и фосфорной кислот, которые, как установлено многочисленными исследованиями (наиболее подробный обзор этих исследований приведен в книге Г. Ф. Егорова, см. список рекомендованной литературы), и определяют изменение свойств экстракционных систем на основе ТБФ. Рассмотрим кратко этот материал, заметив следующее обстоятельство. Поскольку исследовательская работа непосредственно с раствором отработавшего ядерного топлива представляет существенные трудности из-за очень высокой удельной активности этого раствора, большинство исследований по изучению поведения экстракционных систем в радиохимической технологии были выполнены с имитационными растворами. В азотнокислый раствор 2-3 моль/дм3, содержащий уран (3 моль/дм3) и плутоний (порядка 0,001 моль/дм3), в качестве имитаторов осколочных радионуклидов вводят стабильные изотопы циркония, ниобия и рутения в виде ионов Zr4+, Nb5+, RuNO3+. - и -активность осколочных радионуклидов имитируют внешним источником излучения (обычно, гамма-излучением 60Со или 137Сs). В качестве экстракционной системы обычно используют 20 - 30 % раствор ТБФ в додекане. В общем случае органическая фаза облученной двухфазной экстракционной системы содержит нитраты урана, плутония и осколочных радионуклидов, связанных в комплексы с ТБФ (состав этих комплексов зависит от валентного состояния иона металла: [Ме(NО3)4. 2ТБФ], [МеО2(NO3)2. 2ТБФ ], [Ме(NО3)3. 3ТБФ ]) и с НДБФ и Н2МБФ. Хелатные комплексы урана, плутония и циркония с дибутилфосфорной кислотой хорошо растворимы в органической фазе. Поэтому в системе "ТБФ - разбавитель - кислый водный раствор" НДБФ и ее комплексы с ионами перечисленных металлов при кислотных промывках и слабокислой реэкстракции остаются преимущественно в органической фазе. Это приводит к накоплению ионов металлов в органической фазе по мере роста в ней концентрации продуктов радиолиза ТБФ и снижает очистку плутония от осколочных радионуклидов. Иллюстрацией этому служит табл. 7.1 (из книги Г. Ф. Егорова). Возникающие при радиолизе ТБФ фосфорная и бутилфосфорная кислоты накапливаются главным образом в водной фазе, следствием чего является снижение коэффициентов распределения плутония и циркония. Накопление Н2МБФ и НДБФ в облученных двухфазных системах, содержащих плутоний, цирконий и др. элементы, приводит к появлению труднорастворимых в водной и органической фазах соединений, которые способствуют образованию третьей фазы в виде осадка или межфазной пленки ("медузы"). С Н2МБФ образуются соединения состава Zr(МБФ)2 + Zr(OH)МБФ3, Fe2(МБФ)2. 2Н2О, UO2(МБФ). 2Н2О, с НДБФ - соединения Zr4(OH)4(ДБФ), Zr(NO3)2. (ДБФ), Pu(ДБФ)3, Pu(NO3). (ДБФ)2, UO2(ДБФ)2, UO2(NO3)2. (ДБФ) и Fe(ДБФ)3. Из соединений металлов с моно- и дибутилфосфорными кислотами наименее растворимыми в водных и органических растворителях являются моно- и дибутилфосфаты циркония; слабо растворимы в водной фазе дибутилфосфаты трехвалентных железа и америция. Именно эти соединения и являются структурной основой осадков и "медуз", накапливающихся в экстракторах. Накопление осадков не только ухудшает технологические показатели экстракционного процесса, но и приводит к нарушению работы оборудования и связанной с этим нежелательной остановке процесса для механической очистки аппаратов.
Таблица 7.1 Влияние облучения органической фазы (20 % раствор ТБФ в додекане) на коэффициент распределения элементов при их экстракции из 2 моль/дм3 раствора азотной кислоты
Накопление в экстрагенте продуктов радиолиза, которые обладают поверхностно-активными свойствами, вызывает изменение его вязкости, коэффициента поверхностного (межфазного) натяжения и снижение скорости расслаивания органической и водной фаз. Примеры этому приведены в табл. 7.2. Таблица 7.2 Влияние излучения на гидродинамические характеристики 30 % раствора ТБФ в додекане при облучении его в контакте с 3 моль/дм3 HNO3
Ухудшение гидродинамических характеристик приводит к дополнительным потерям экстрагента, загрязнению водных рафинатов органическими соединениями, а при больших поглощенных дозах - к образованию стойких, трудно расслаиваемых эмульсий, препятствующих дальнейшему использованию экстрагента. Теперь рассмотрим некоторые количественные параметры радиолиза чистого ТБФ и его растворов в углеводородных разбавителях. При облучении индивидуального ТБФ наблюдается выделение газа. Газ состоит из водорода (главный газообразный продукт, G(H2) = 2,0 молекула/100 эВ) и углеводородов С2 - С4 (основной продукт - бутан, суммарный выход углеводородов около 0,5 молекула /100 эВ). Жидкофазные продукты радиолиза - уже упоминавшиеся выше ди-бутилфосфорная, бутилфосфорная и фосфорная кислоты, а также полимер. Наблюдалось также образование бутанола при высоких поглощенных дозах. Выход разложения ТБФ равен: G(-ТБФ) = G(НДБФ) + G(Н2МБФ) + G(полимер) = 2- 5 молекула/100 эВ. НДБФ и Н2МБФ при облучении дозами, меньшими 106 Гр, накапливаются линейно с G(НДБФ)/G(Н2МБФ) = 7-8 (G(НДБФ) = 2-2,5 молекула/100 эВ). Далее это соотношение уменьшается, достигая 2 - 2,5 при дозах, больших 107 Гр. Фосфорная кислота обнаруживается при дозах, больших 106 Гр, но ее выход не превышает 0,01 молекула/100 эВ. Полимер включает кислые и нейтральные фракции с молекулярной массой от 300 до 3000 (средняя 800-1000). Он возникает, по всей вероятности, в результате полимеризации поврежденных молекул ТБФ. Выход полимера составляет 1 - 2 молекула/100 эВ. При облучении в многокомпонентной системе радиационная стойкость ТБФ зависит от факторов, характеризующих состав системы и условия облучения: природы разбавителя, концентраций кислорода, кислоты и солей металлов, природы излучения и мощности дозы, температуры облучения и характера массообмена между фазами. Характерной особенностью радиолиза ТБФ в углеводородных разбавителях является отклонение разложения ТБФ от правила аддитивности:количество разложившегося ТБФ не соответствует при прочих равных условиях доле энергии, поглощенной ТБФ как компонентом данной смеси (рассчитанной по электронной доле в смеси). В случае алифатических углеводородов имеет место положительное отклонение - выход разложения выше, чем это требует правило аддитивности, а в случае ароматических углеводородов - ниже. Отклонение от аддитивности связано с передачей энергии от углеводорода к ТБФ (алифатические углеводороды, сенсибилизация) или от ТБФ к углеводороду (ароматические разбавители, защита ТБФ). Облучение ТБФ в водно-органических двухфазных системах сопровождается перераспределением продуктов радиолиза между фазами. НДБФ слабо растворима в водной фазе и накапливается в органике, тогда как бутилфосфорная и фосфорная кислоты переходят в водную фазу. При облучении двухфазной системы на образование продуктов радиолиза сильное влияние оказывают присутствие HNO3, Pu4+ и UO22+: с ростом концентрации этих компонентов выход разложения ТБФ увеличивается. Температура в интервале 25-50 оС практически не оказывает влияния на радиационно-химическое разложение ТБФ в двухфазной системе. При температуре выше 60 оС, однако, скорость разложения возрастает, так как в этих условиях интенсифицируется процесс термического (нерадиационного!) гидролиза: (С4Н9О)3РО3 + Н2О С4Н9Н + (С4Н9О)2Р(О)ОН. Кинетика разложения ТБФ в двухфазной систем (30% раствор ТБФ в н-парафине - 3 моль/дм3 HNO3) при D > 103 Гр, практически не зависит от мощности дозы и определяется реакциями:
Этой последовательности реакций соответствуют следующие выражения для зависимости текущих концентраций продуктов от дозы (D): [ТБФ] = [ТБФ]o ехр (-k1 D), [ТБФ] = [ТБФ]o k1 D exp (-k2 D), [ТБФ] = [ТБФ]o k1 k2 D2 exp (-k3 D). Значения констант: k1 = 2,26.10-7, k2 = 5,95.10-6 и k3= 1,39.10-5 1/Гр. Приведенные уравнения и значения констант скорости эффективных реакций позволяют с приемлемой точностью в интервале доз 103 - 106 Гр рассчитывать концентрации продуктов радиолиза ТБФ. НДБФ и H2МБФ - наиболее изученные продукты деструкции ТБФ при облучении в двухфазной системе. Другие жидкофазные продукты изучены слабо: в этих условиях наблюдались смешанные продукты взаимодействия ТБФ и разбавителя, а также продукты нитрования и окисления разбавителя - нитросоединения, алкилнитриты и алкилнитраты и карбонильные соединения. В табл. 7.3. приведены выходы продуктов радиолиза додекана при облучении экстракционной системы и индивидуального додекана в контакте с азотной кислотой (3 моль/дм3) при мощности дозы 1,0 Гр/с. Выходы газообразных продуктов при радиолизе двухфазных систем (ТБФ + разбавитель + раствор азотной кислоты) практически такие же, как и в случае однофазной системы (ТБФ+разбавитель), насыщенной водой. Таблица 7.3 Выходы продуктов радиолиза (G, молекула/100 эВ) додекана в контакте с азотной кислотой (3 моль/дм3) и экстрагентом
|