Студопедия — Критерии оценки степени загрязнения подземных вод в зоне влияния хозяйственных объектов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерии оценки степени загрязнения подземных вод в зоне влияния хозяйственных объектов






Определяемые показатели   Превышение показателей  
в зоне эко­логического бедствия   в чрезвычайной экологи­ческом ситуа­ции   в относитель­но удовлетворительном ситуации  
Основные показатели: - содержание загрязняющих веществ (нитраты, фенолы,тяжелые металлы, синтетические поверхностно актив­ные вещества СПАВ, нефть), превышение над ПДК*   >100     10-100     3-5  
-хлорорганические соедине­ния, ПДК - канцерогены — бенз(а)пирен, ПДК - площадь области загрязне­ния, км2 - минерализация, г/л >3 >3 >8 >100 1-3 1-3 3-5 10-100 < 1 < 1 <0.5 <3
Дополнительные показатели: - растворенный кислород, мг/л <1   4-1   >4  

* ПДК — санитарно-гигиенические

Глубина проникновения радионуклидов с поверхнос­ти на песчаных грунтах условно принята до 50—100 см, причем основ­ное количество техногенных радионуклидов исследуется в верхнем 10-сантиметровом слое почвы. В радиационно-экологические исследо­вания рекомендуют включать:

* оценку гамма-фона на территории застройки;

* определение радиационных характеристик источников водо­снабжения;

* оценку радоноопасности территории.

Степень радиоэкологической безопасности человека, проживаю­щего на загрязненной территории, определяется годовой эффектив­ной дозой радиоактивного облучения от природных и техногенных источников, доза от техногенных источников не должна превышать 1 мЗв/год (или 0,1 бэр/год). Территории, в пределах которых средне­годовые значения эффективной дозы облучения (сверх естественно­го фона) находятся в диапазоне 5-10 мЗв/год, относят к районам чрезвычайной экологической ситуации, а более 10 мЗв/год — к зо­нам экологического бедствия. Нормальный естественный уровень мощности эквивалентной дозы (МЭД) внешнего гамма-излучения на открытых территориях в средней полосе России составляет от 0,1 до 0,2 мЗв/час, а в отдельных, например, в предгорных и горных районах — до 0,3 мЗв/час.

При предварительной оценке радиационной обстановки исполь­зуют данные специальных служб Росгидромета, осуществляющих об­щий контроль за радиоактивным загрязнением окружающей среды, и центров СЭН (Санитарно-эпидемиологический надзор) Минздрава России, проводящих контроль за уровнем радиационной безопаснос­ти населения.

Выявляют и оценивают опасность источников внешнего гамма-излучения с помощью радиационной съемки (определение мощности эквивалентной дозы внешнего гамма-излучения) и радиометричес­кого опробования с последующим гамма-спектрометрическим или ра­диохимическим анализом проб в лаборатории (определение радионуклидного состава загрязнений и их активности).

Маршрутную гамму-съемку территории следует проводить с одно­временным использованием поисковых гамма-радиометров и дозимет­ров. Поисковые радиометры используются в режиме прослушивания звукового сигнала для обнаружения зон с повышенным гамма-фоном. При этом территория должна быть подвергнута, по возможности, сплошному прослушиванию при перемещениях радиометра по пря­молинейным или Z-образным маршрутам. Дозиметры используются для измерения МЭД внешнего гамма-излучения в контрольных точ­ках по сетке, шаг которой определяется в зависимости от масштаба съемки и местных условий. Измерения проводятся на высоте 0,1 м над поверхностью почвы, а также в скважинах, вскрывающих насыпные грунты.

Усредненное, характерное для данной территории числовое зна­чение МЭД, обусловленное естественным фоном, устанавливается местными органами СЭН. Участки, на которых фактический уровень МЭД превышает обусловленный естественным гамма-фоном, рассмат­риваются как аномальные. В зонах выявленных аномалий гамма-фона интервалы между контрольными точками должны последовательно сокращаться до размера, необходимого для оконтуривания зон с уров­нем МЭД > 0,3 мЗв/час.

На таких участках для оценки величины годовой эффективной дозы должны быть определены удельные активности техногенных ра­дионуклидов в почве и по согласованию с СЭН решен вопрос о необходимости проведения дополнительных исследований или дезактивационных мероприятий. Масштабы и характер защитных мероприятий определяются с учетом интенсивности радиационного воздействия загрязнений на население.

Объектами радиометрического опробования также являются почвы и грунты различных ландшафтов, поверхностные и подземные воды (в первую очередь в зоне действующих водозаборов), донные осадки водоемов и техногенные объекты (карьеры, терриконы, свалки, поли­гоны промышленных и бытовых отходов, склады строительных материа­лов, а также консервируемые объекты с повышенной радиоактивностью).

Радоноопасность территории определяется плотностью потока радо­на с поверхности грунта и содержанием радона в воздухе построенных зданий и сооружений. Оценка потенциальной радоноопасности терри­тории определяется по геологическим и геофизическим признакам. К геологическим признакам относятся: наличие определенных петрогра­фических типов пород, разрывных нарушений; сейсмическая активность территории, присутствие радона в подземных водах и выходы радоно­вых источников на поверхность. Геофизические признаки включают высо­кую удельную активность радия в породах, слагающих геологический разрез. Измеряются уровни объемной активности (ОА) радона (концен­трация) в почвенном воздухе, ЭРОА радона в зданиях и сооружениях, эксплуатируемых на исследуемой территории и в прилегающей зоне.

Наличие данных о зарегистрированных значениях эквивалентной равновесной объемной активности (ЭРОА) радона, превышающих 100 Бк/м, в эксплуатируемых в исследуемом районе зданиях служит основанием для классификации территории как потенциально радоноопасной. На предпроектных стадиях должна быть выполнена пред­варительная оценка потенциальной радоноопасности территории. На стадии проекта производится уточнение радоноопасности площадки и определение класса требуемой противорадоновой защиты зданий.

Все измерения физических характеристик среды, определяющих радиационно-экологическую обстановку, должны заноситься в банки данных территориальных изыскательских организаций, территориаль­ных подразделений по охране окружающей среды и СЭН.

Газо-геохимические исследования выполняют на участках насып­ных грунтов с примесью строительного, промышленного мусора и бытовых отходов (участках несанкционированных бытовых свалок) мощностью более 2,0—2,5 м, использование которых для строитель­ства требует проведения работ по рекультивации территории. Основ­ная опасность использования насыпных грунтов в качестве основания сооружений связана с их способностью генерировать биогаз, состоя­щий из горючих и токсичных компонентов.

Главные из них — метан (до 40—60% объема) и двуокись углерода. В качестве примесей присутствуют: тяжелые углеводородные газы, окис­лы азота, аммиак, угарный газ, сероводород, молекулярный водород и др. Биогаз образуется при разложении «бытовой» органики в резуль­тате жизнедеятельности анаэробной микрофлоры в грунтовой толще на глубине более 2,0-2,5 м. В верхних аэрируемых слоях грунтовых толщ происходит аэробное окисление органики и продуктов биогазо­образования. Биогаз сорбируется вмещающими насыпными грунтами и отложениями естественного генезиса, растворяется в грунтовых во­дах и верховодке и диссипирует в приземную атмосферу.

При строительстве на насыпных грунтах возникает опасность накопления биогаза в технических подпольях зданий и инженерных коммуникациях до пожаро- и взрывоопасных концентраций по мета­ну (5-15% при 02> 12,1%) (здесь и далее концентрации газа приведены в объемных процентах) или до токсичных содержаний (выше ПДК) отдельных компонентов. Потенциально опасными в газо-геохимическом отношении считаются грунты с содержанием метана > 0,1% и СО2 > 0,5%; в опасных грунтах содержание метана > 1,0% и СО2 до 10%; пожаро- и взрывоопасные грунты содержат метана > 5,0%, при этом содержание СО2 — n—10%.

В связи с этим необходимо проводить различные виды поверхно­стных газовых съемок (шпуровую, эмиссионную), которые сопровож­даются отбором проб грунтового воздуха и приземной атмосферы; скважинные газо-геохимические исследования (с послойным отбо­ром проб грунтового воздуха, грунтов, подземных вод) и лаборатор­ные исследования компонентного состава свободного грунтового воз­духа, газовой фазы грунтов, растворенных газов и биогаза, диссипирующего в приземную атмосферу.

Экологически опасные зоны (при содержании СН4 > 1,0% и СО2 > 10%), из которых грунты полностью удаляются с территории строительства и заменяются на газогеохимически инертные, а также потенциально опасные зоны, в которых здания и инженерные сети обустраиваются газодренажными системами или газонепроницаемы­ми экранами, должны быть показаны на картах и разрезах.

Исследование вредных физических воздействий (электромагнитного излучения, шума, вибрации, тепловых полей и др.) проводятся при разработке градостроительных проектов на освоенных территориях. Фиксируются основные источники вредных физических воздействий, его интенсивность и зоны дискомфорта. Для оценки физических воз­действий специально измеряют компонент электромагнитного поля в различных диапазонах частот, амплитудного уровня и частотного со­става вибраций от различных промышленных, транспортных и быто­вых источников, шумов и др.

Оценка воздействия электромагнитного излучения на организм человека включает оценку влияния электрического и магнитного по­лей, создаваемых высоковольтными линиями электропередачи пере­менного тока промышленной частоты (ЛЭП), а также высоковольт­ными установками постоянного тока (электростатическое поле) для электромагнитных полей радиочастот, включая метровый и децимет­ровый диапазоны волн телевизионных станций.

Предельно допустимые уровни (ПДУ) напряженности электричес­ких полей промышленной частоты (50 Гц), установленные ГОСТом 12.1.002-84 и СанПиН 2971-84, представлены в табл. 5.

Таблица 5







Дата добавления: 2015-06-16; просмотров: 664. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия