Студопедия — Законы термодинамики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы термодинамики







Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы.
В идеальном случае экосистема со сбалансированной жизнедеятельностью автотрофных организмов и гетеротрофных организмов может приближаться к замкнутой системе, обменивающейся с окружающей средой только энергией. Однако в естественных условиях длительное существование экосистем возможно при притоке из окружающей среды не только энергии, но и большего или меньшего количества вещества. Все реальные экосистемы, в совокупности слагающие биосферу Земли, принадлежат к открытым системам, обменивающимся с окружающей их средой веществом и энергией.
Энергия (гр. еnergeiа – деятельность) – источник жизни, основа и средство управления всеми природными и общественными системами. С помощью энергии производятся все продукты питания, необходимые для жизни человека и других организмов. Энергия позволяет переводить вещества из одного состояния в другое, осуществлять круговорот веществ и производить все виды работы в природе.
Энергия – движущая сила мироздания. Основное свойство материи - способность производить работу. Законы превращения энергии проявляются во всех процессах, происходящих в природе и обществе, включая экономику, культуру, науку и искусство. Компонент энергии есть во всем: в материи, информации, произведениях искусства и человеческом духе.
Все, что происходит внутри и вокруг нас, основано на работе, в процессе которой одни виды энергии переходят в другие, согласно фундаментальным законам физики. Законы термодинамики имеют универсальное проявление в природе.
Лауреат Нобелевской премии Ф. Садди писал: «Законы термодинамики определяют взлеты и падения политических систем, свободу и ограничения государств, развитие торговли и промышленности, причины богатства и нищеты, благосостояние человечества». Ясно, что будущее зависит от объединения энергетики, экономики и экологии (трех «Э») в единую систему взаимосвязанных явлений и процессов. Изучение таких систем требует системного подхода, поскольку энергия – это тот фундамент, который позволяет природные ценности перевести в ряд экономических, а экономические - оценивать с позиций экологии.
Природные экологические системы могут служить моделью общих принципов функционирования систем, основанных на энергетических процессах. Эти системы существуют на Земле много миллионов лет, несмотря на их огромное биоразнообразие и индивидуальные качества различных биосистем, в их поведении есть общие черты, связанные с принципиальным сходством энергетических процессов.
Превращение энергии Солнца в энергию пищи путем фотосинтеза, происходящего в зеленом листе, иллюстрирует действие двух законов термодинамики, которые справедливы и для любых систем.
Первый закон термодинамики – закон сохранения энергии – гласит: энергия не создается и не исчезает, она превращается из одной формы в другую. В результате превращений энергии определено, что никогда нельзя получить энергии больше чем затрачено - нельзя из ничего получить нечто. На выходе из системы энергия преобразуется в иные формы.
Любая преобразовательная деятельность человека не в состоянии ни создать, ни уничтожить ни единого атома вещества, а лишь позволяет перевести из одного состояния в другое. С точки зрения природопользования необходимо усвоить, что любой процесс будет создавать отходы, которые также являются частью преобразовательного природного вещества.
Необходимо совершенно четко представлять, что закон сохранения энергии имеет всеобщий характер и распространяется на все процессы на Земле, включая общественные и иные отношения человечества. Так, он безусловно действует в экономике; например, закон стоимости и его выражение в денежной форме является его прямым следствием.
Второй закон термодинамики утверждает: при любых превращениях энергия переходит в форму, наименее пригодную для использования и наиболее легко рассеивающуюся. Этот закон устанавливает, что любые превращения энергии не позволяют получить ее больше, чем было затрачено изначально, то есть любой материальный объект на Земле при любых физических, химических или иных изменениях может лишь видоизменять энергию из одного вида в другой, но не добиться ее возникновения или исчезновения.
При определении любого энергетического процесса, текущего самопроизвольно, происходит переход энергии из концентрированной формы в рассеянную, то есть всегда существуют потери энергии (в виде недоступного для использования тепла), при этом стопроцентный переход из одного вида энергии в другой невозможен. Характерно действие этого закона при переходе из одной формы в другую в живых системах: солнечная энергия в растениях при помощи фотосинтеза преобразуется в органическое вещество и далее в пище консументов преобразуется в движение мышц, работу мозга и другие проявления жизни.
На каждом этапе высококачественная энергия переходит с одного уровня на другой, и при этом ее основная часть превращается в низкокачественное тепло и рассеивается в окружающей среде. В открытых системах энтропия (мера количества связанной энергии, которая в изотермическом процессе недоступна для использования, мера беспорядка, неупорядоченности системы) переходит не в полезную работу, а в тепло и рассеивается в пространстве и снижается до определенной минимальной величины, но всегда большей нуля.
Закон однонаправленности потока энергии: энергия, получаемая сообществом и усваиваемая продуцентами, рассеивается или вместе с их биомассой передается консументам, а затем редуцентам с падением потока на каждом трофическом уровне. Поскольку в обратный поток (от редуцентов к продуцентам) поступает ничтожное количество изначально вовлеченной энергии (максимум 0,35%) говорить о «круговороте энергии» нельзя: существует лишь круговорот веществ, поддерживаемый потоком энергии.
Для экологических биологоэволюционных, а также общественных процессов важное значение имеет принцип (закон) диссипации (рассеивания) Л. Онсагера или принцип экономии энергии (экономии энтропии). Он определяет, что при возможности развития процесса в некотором множестве направлений (каждое из которых допускается началами термодинамики) будет реализовано то, которое обеспечивает минимум диссипации энергии (то есть минимум роста энтропии).
Все органические молекулы, образующие ткани живого (целлюлоза, жиры, сахара, крахмал и т.п.) содержат не только атомы углерода, водорода и некоторых других элементов. Кроме того, в них запасена потенциальная энергия. Доказательством может служить тот факт, что все названные вещества горят. Тепло и свет пламени означают высвобождение их потенциальной энергии в виде кинетической.
И, напротив, при синтезе органических молекул из неорганического «сырья» происходит запасание потенциальной энергии, требующее поступление извне кинетической энергии.
Первичное органическое вещество на Земле образуется, в основном, зелеными растениями под воздействием солнечной энергии. Согласно второму началу термодинамики любые виды энергии в конечном итоге превращаются в тепловую форму и рассеиваются. Ряд химических реакций сопровождается выделением, рассеиванием энергии. Реакция же фотосинтеза идет против температурного (термодинамического) градиента, т.е. сопровождается накоплением энергии в органическом веществе за счет преобразования энергии фотонов в энергию химических связей.
2-ой принцип функционирования экосистемы: экосистемы существуют за счет не загрязняющей среду и практически неограниченной солнечной энергии, количество которой относительно постоянно и избыточно.
Живые организмы, входящие в состав биоценоза, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии. В отличие от растений животные не способны к реакциям фото- и хемосинтеза, а вынуждены использовать солнечную энергию опосредованно - через органическое вещество, созданное фотосинтетиками. Таким образом, в биогеоценозе образуется цепь последовательной передачи вещества и эквивалентной ему энергии от одних организмов к другим или так называемая трофическая (греч. «трофе» - питаюсь) цепь.
Концентрационная (накопительная) функция – это избирательное накопление определенных веществ, рассеянных в природе (водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы), в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных – все это примеры проявления концентрационной функции живого вещества.
Способность концентрировать элементы из разбавленных растворов - это характерная особенность живого вещества. Наиболее активными концентраторами многих элементов являются микроорганизмы. Например, в продуктах жизнедеятельности некоторых из них по сравнению с природной средой содержание марганца увеличено в 1 200 000 раз, железа - в 65 000, ванадия - в 420 000, серебра - в 240 000 раз.
Для построения своих скелетов или покровов активно концентрируют рассеянные минералы морские организмы. Так, существуют кальциевые организмы - известковые водоросли, моллюски, кораллы, мшанки, иглокожие, и т.п. и кремниевые - диатомовые водоросли, кремниевые губки, радиолярии. Особого внимания заслуживает способность морских организмов накапливать микроэлементы, тяжелые металлы, в том числе ядовитые (ртуть, свинец, мышьяк) радиоактивные элементы. В теле беспозвоночных и рыб их концентрация может в сотни тысяч раз превосходить содержание в морской воде. Вследствие этого морские организмы полезны как источник микроэлементов, но вместе с тем употребление их в пищу может грозить отравлением тяжелыми металлами или быть опасным в связи с повышенной радиоактивностью.
Продуценты и питающиеся ими консументы образуют два первых звена трофической цепи. Вторичные консументы (второго порядка) продолжают трофическую цепь, которая на этом не заканчивается, и вторичный консумент может служить источником питания для консументов третьего порядка и т.д.
Цепи бывают простыми (например, трава - заяц - лисица) и более сложными (например, трава - насекомые - лягушки - змеи - хищные птицы). Разные трофические цепи связаны между собой общими звеньями, образуя сложную систему, называемую трофической сетью.
В процессе питания на всех трофических уровнях появляются отходы: опад листьев зеленых растений, гибель различных организмов и др. В конечном итоге созданное органическое вещество должно частично или полностью замениться с помощью детритофагов (раки, черви, термиты) и редуцентов (грибы, бактерии), которые постепенно разлагают органические остатки продуцентов и консументов до минеральных веществ. Минеральные вещества и СО2, выделяющиеся при дыхании детритофагов и редуцентов, вновь возвращаются к продуцентам.
Растительные остатки, поступающие в почву, включают: 45% О2, 42% Н2, 6,5% N2, 1,5% воды, содержащей, в основном, Ca, Si, K и P (зольные элементы). Особенно велика роль микроорганизмов в процессах разложения мертвого органического вещества в почве.
Бактерии делятся на: аэробные и анаэробные. Аэробные используют для дыхания свободный кислород, анаэробные - отбирают кислород от каких-либо соединений, например, оксидов. Например, целлюлоза под влиянием микроорганизмов разрушается до СО2 и воды (в присутствии кислорода), или до водорода и метана (в анаэробных условиях). Смолы и жиры подвергаются окислению до СО2 и Н2О (в аэробных условиях), нор в анаэробных - практически не разлагаются. В аэробных условиях органические соединения минерализуются интенсивнее, но такие условия создаются редко и чередуются с анаэробными, при которых возможно накопление промежуточных продуктов.
Белки подвергаются процессу аммонификации (связанному с образованием аммиака и далее солей аммония, доступных для ассимиляции растениями).
Однако часть аммиака под воздействием нитрифицирующих бактерий нитрифицируется, т.е. окисляется, сначала до азотистой кислоты, а затем до азотной кислоты и, наконец, при взаимодействии HNO3 с основаниями почвы образуются соли азотной кислоты. В каждом процессе участвует особая группа бактерий. В анаэробных условиях соли азотной кислоты подвергаются денитрификации с выделением свободного азота.
Трофическая цепь в биогеоценозе есть одновременно энергетическая цепь, т.е. последовательный упорядоченный поток передачи энергии Солнца от продуцентов ко всем остальным звеньям. Любое количество органического вещества эквивалентно некоторому количеству энергии (энергию можно извлечь, разрушив химические связи органического вещества).
Организмы-потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частью идущую на построение собственного органического вещества и связывающуюся в молекулах, соответствующих химических соединений, а частью расходующуюся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, спасение от врагов и т.п.
Организмы используют большую часть энергии, ассимилируемой ими с пищей, для выполнения разнообразной работы, для роста и размножения. Ассимилированная энергия, которая не теряется в процессах дыхания и выделения, может быть использована для синтеза новой биомассы в результате роста и размножения.
Движение энергии через сообщество зависит от эффективности, с которой организмы потребляют свои пищевые ресурсы и превращают их в биомассу. Эта эффективность называется эффективностью пищевой цепи или экологической эффективностью. Экологическая эффективность зависит от эффективностей трех главных ступеней в потоке энергии: эксплуатации, ассимиляции и чистой продукции.
Рассматривая потоки энергии в экосистемах, легче понять, почему с повышением трофического уровня биомасса снижается. Любую популяцию живых организмов можно рассматривать как биомассу, которая каждый год увеличивается за счет роста и размножения организмов и одновременно сокращается за счет естественной гибели и потребления консументами. Например, консументы съедают за год не больше того, что производят продуценты. Если же будут съедать больше (из-за стрессовых ситуаций), то популяция продуцентов, в конце концов, исчезнет.
Существенная доля потребляемой консументами биомассы не усваивается ими и возвращается в экосистему в виде экскрементов. То же самое наблюдается при переходе на более высокие трофические уровни. Таким образом, мы имеем дело с третьим основным принципом функционирования экосистем: чем больше биомасса популяции, тем ниже должен быть занимаемый ею трофический уровень.
Таким образом, в экосистеме имеет место непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т.е. с ее потерями и возрастанием энтропии. Это рассеивание все время компенсируется поступлением энергии от Солнца.
Каждая экосистема обладает определенной продуктивностью. Последнюю оценивают, соотнося массу вещества с единицей времени, т.е. рассматривая ее как скорость образования вещества (биомассы). Основная или первичная продуктивность системы определяется как скорость, с которой лучистая энергия Солнца усваивается продуцентами в процессе фотосинтеза. Например, за год в результате фотосинтеза растительные организмы леса образовали 5 т органического вещества на 1 га; это валовая первичная продуктивность. Все накопленное экосистемой вещество за вычетом вещества, израсходованного на дыхание, составляет фактическую, или чистую первичную продуктивность.
Консументы тоже создают органическое вещество за счет чистой первичной продуктивности. Продуктивность консументов носит название вторичной.
Расчеты показывают, что 1 га леса в среднем ежегодно воспринимает 2,1×109 кДж энергии Солнца. Однако, если все за один год растительное вещество сжечь, то в результате получится всего 1,1×106 кДж, что составляет 0,5%. Это значит, что фактическая первичная продуктивность фотосинтетиков (зеленых растений) не превышает 0,5 %. Вторичная продуктивность еще ниже: при передаче от каждого предыдущего звена трофической цепи к последующему теряется 90-99 % энергии. Если, например, растениями на 1 м2 поверхности почвы создано за 1 сутки количество веществ, эквивалентное 84 кДж, то продукция первичных консументов составит 8,4 кДж, а вторичных - не превысит 0,8 кДж. Имеются расчеты, показывающие, что для образования 1 кг говядины необходимо 70-90 кг свежей травы.
Продуктивность отдельных звеньев экосистемы можно выражать не только в энергетических единицах, но и численно, в показателях массы (единицах биомассы или в численных единицах совокупность живых компонентов экосистемы, присутствующих в ней в определенный момент времени).
Различают продуктивность текущую и общую. Если 1 га соснового леса способен за время своего существования и роста образовать 200 м3 древесной массы, то это - общая продуктивность. Однако. За 1 год такой лес создает всего 1,7-2,5 м3 древесины. Это - текущая продуктивность, или годичный прирост.
Продуктивность экосистем и соотношение в них различных трофических уровней принято выражать в форме пирамид. Первая пирамида была построена Ч. Элтоном и носит название пирамиды чисел:
Пирамиды наглядно иллюстрируют соотношение биомасс и эквивалентных им энергий в каждом звене пищевой цепи и используются в практических расчетах при обосновании (например, необходимых площадей под сельскохозяйственные культуры).
Закон пирамиды энергий (правило десяти процентов). В соответствии с законом пирамиды энергий с одного трофического уровня экологической пирамиды переходит на другой ее уровень в среднем не более 10% энергии.
Эта величина не приводит к неблагоприятным для экосистемы последствиям и поэтому может быть принята для природопользования. Превышение же этой величины недопустимо, так как в этом случае могут произойти полные исчезновения популяций. Закон пирамиды энергий (правило 10%) служит общим ограничением для практических целей в природопользовании для хозяйственной деятельности человека.
Закон пирамиды энергий позволяет делать расчеты необходимой земельной площади для обеспечения населения продовольствием и другие эколого-экономические расчеты.
Чем же определяется реальная продуктивность экосистемы? От каких процессов она зависит? Рассмотрим это. В любой экосистеме происходит образование биомассы и ее разрушение, и эти процессы целиком определяются жизнедеятельностью низшего трофического уровня - растениями-продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество, и, следовательно, общая продуктивность экосистемы от них не зависит.
В растительных же организмах, в зеленых тканях листа осуществляются два параллельных процесса - фотосинтез и дыхание (выделение). При фотосинтезе вещество создается, энергия накапливается, а при дыхании часть накопленных веществ расходуется.
Если в экосистеме процессы накопления вещества преобладают над процессами дыхания, то биомасса и энергия возрастают. Если же в процессе дыхания или потребления последующими звеньями пищевой цепи расходуется больше вещества, чем создается растениями, то запасы биомассы убывают.
Та зона, в пределах которой растения способны увеличивать биомассу, носит название эвфотической (от греч. «эв»- пере, сверх, «фотос» - свет). Экосистемы, в которых P/R>1 (суммарная биомасса возрастает), называются системами с автотрофной сукцессией, где
P - продуцируемая биомасса;
R - расходы на дыхание.
При P/R<1 суммарная биомасса экосистемы снижается, и такие экосистемы характеризуются гетеротрофной сукцессией. Если P/R = 1, объем биомассы и суммарные запасы энергии в ней остаются постоянными; такие экосистемы называют климаксными.
Как уже говорилось, организмы (биота) - лишь одна составляющая экосистемы; вторая - это окружающая их среда. Химические и физические факторы среды называют абиотическими. К ним относятся свет, температура, вода, ветер, химические биогены, рН среды, соленость и др. Все эти факторы действуют на организмы одновременно, в свою очередь, сильно влияя на экосистему в целом.

 

14.

Пищева́я (трофи́ческая) цепь — ряд взаимоотношений между группами организмов (растений, животных, грибов и микроорганизмов), при котором происходит перенос вещества и энергии путем поедания одних особей другими.[1][2]

Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80—90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4—5.

Структура пищевой цепи[править | править вики-текст]

Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища — потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды. Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами. Чаще всего на этом месте находятсярастения, грибы, водоросли. Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия. В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

Трофическая сеть[править | править вики-текст]

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища — потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру — трофическую сеть.

Трофический уровень [править | править вики-текст]

Трофический уровень — условная единица, обозначающая удалённость от продуцентов в трофической цепи данной экосистемы.

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Типы пищевых цепей[править | править вики-текст]

Существуют 2 основных типа трофических цепей — пастбищные и детритные.

В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийсяфитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, щука, питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

В детритных трофических цепях (цепи разложения), наиболее распространённых в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита (органических останков), идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоёмах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

Наземные детритные цепи питания более энергоёмки, поскольку большая часть органической массы, создаваемой автотрофными организмами, остаётся невостребованной и отмирает, формируя детрит. В масштабах планеты, на долю цепей выедания приходится около 10 % энергии и веществ запасённых автотрофами, 90 % же процентов включается в круговорот посредством цепей разложения.

 

15.

 

Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океанаили в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных организмов (большинство растений ифотосинтезирующие бактерии), а в жизни гетеротрофных организмов (грибы, животные, значительная часть микроорганизмов) свет не оказывает заметного влияния на жизнедеятельность.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

Классификации экологических факторов[править | править вики-текст]

По характеру воздействия [править | править вики-текст]

  • Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ
  • Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению [править | править вики-текст]

  • Абиотические — факторы неживой природы:
    • климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха
    • эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы
    • орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона
    • химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность
    • физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения
  • Биотические — связанные с деятельностью живых организмов:
    • фитогенные — влияние растений
    • микогенные — влияние грибов
    • зоогенные — влияние животных
    • микробиогенные — влияние микроорганизмов
  • Антропогенные (антропические):
    • физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации
    • химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта
    • биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания
    • социальные — связанные с отношениями людей и жизнью в обществе

По расходованию [править | править вики-текст]

  • Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)
  • Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности [править | править вики-текст]

  • Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы
  • Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом
  • Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

 

17.

Экологи́ческая ни́ша — место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды. Термин введён в 1914 году Дж. Гриннеллом и в 1927 году Чарльзом Элтоном[1]. В настоящее время определение Гриннелла принято называть пространственной нишей (по смыслу термин ближе понятию местообитание), а определение Элтона называют трофической нишей (экологическая ниша представляет собой сумму факторов существования данного вида, основным из которых является его место в пищевой цепочке)[2]. В настоящее время доминирует модель гиперобъёма Дж. Э. Хатчинсона[3][4]. Модель представлена как n-мерный куб, на осях которого отложены экологические факторы. По каждому фактору у вида есть диапазон, в котором он может существовать (экологическая валентность). Если провести проекции от крайних точек диапазонов каждой оси факторов, мы получим n-мерную фигуру, где n — количество значимых для вида экологических факторов. Модель в основном умозрительна, но позволяет получить хорошее представление об экологической нише[5]. По Хатчинсону[6] экологическая ниша может быть:

  • фундаментальной — определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;
  • реализованной — свойства которой обусловлены конкурирующими видами.

Допущения модели:

1. Реакция на один фактор не зависит от воздействия другого фактора;

2. Независимость факторов друг от друга;

3. Пространство внутри ниши однородное с одинаковой степенью благоприятности.

Это различие подчёркивает, что межвидовая конкуренция приводит к снижению плодовитости и жизнеспособности и что в фундаментальной экологической нише может быть такая часть, занимая которую вид в результате межвидовой конкуренции не в состоянии больше жить и успешно размножаться. Эта часть фундаментальной ниши вида отсутствует в его реализованной нише[7]. Таким образом, реализованная ниша всегда входит в состав фундаментальной или равна ей.

Принцип конкурентного исключения[править | править вики-текст]

Суть принципа конкурентного исключения, также известного как принцип Гаузе, состоит в том, что каждый вид имеет свою собственную экологическую нишу[8]. Никакие два разных вида не могут занять одну и ту же экологическую нишу. Сформулированный таким образом принцип Гаузе подвергался критике. Например, одним из известных противоречий этому принципу является «планктонный парадокс». Все виды живых организмов, относящихся к планктону, живут на очень ограниченном пространстве и потребляют ресурсы одного рода (главным образом солнечную энергию и морские минеральные соединения). Современный подход к проблеме разделения экологической ниши несколькими видами указывает, что в некоторых случаях два вида могут разделять одну экологическую нишу, а в некоторых такое совмещение приводит один из видов к вымиранию.

Вообще, если речь идёт о конкуренции за определённый ресурс, становление биоценозов связано с расхождением экологических ниш и уменьшением уровня межвидовой конкуренции[9][10]:стр.423. При таком варианте правило конкурентного исключения подразумевает пространственное (иногда функциональное) разобщение видов в биоценозе. Абсолютное вытеснение, при подробном изучении экосистем, зафиксировать почти невозможно[10]:стр.423

 

Вид кривых изменения численности конкурирующих видов

Гаузе сформулировал принцип конкурентного исключения работая с инфузориями Paramecium caudatum, P. aurelia, P. bursaria. Все три вида хорошо росли в монокультуре, достигая в пробирках с жидкой средой стабильных значений предельных плотностей популяции. Пищей инфузориям служили бактериальныеили дрожжевые клетки, растущие на регулярно добавляемой овсяной муке. Однако, когда он фактически смоделировал экологическую нишу, совместно выращивая P. caudatum и P. aurelia, было показано что P. aurelia вытеснила P. caudatum. При совместном выращивании Р. caudatum и Р. bursaria сосуществуют, но на более низком уровне плотности, чем в монокультуре. Как выяснилось, они были пространственно разобщены в пробирке Р.bursaria — на дне пробирке и питалась дрожжами, тогда как Р. caudatum — наверху и питается бактериями.

С тех пор принцип конкурентного исключения, гласящий, что «полные конкуренты не могут существовать бесконечно», стал одним из главных догматов теоретической экологии. Таким образом, если два вида сосуществуют, то между ними должно быть какое-то экологическое различие, а это означает, что каждый из них занимает свою особую нишу.

Конкурируя с более сильным видом, слабый конкурент утрачивает свою реализованную нишу. Таким образом, выход из конкуренции достигается расхождением требований к среде, изменению образа жизни или, другими словами, является разграничением экологических ниш видов. В этом случае они приобретают способность сосуществовать в одном биоценозе. Так, в мангровых зарослях побережья Южной Флориды обитают самые разные цапли и нередко на одной и той же отмели кормятся рыбой до девяти разных видов. При этом они практически не мешают друг другу, так как в их поведении — в том, какие охотничьи участки они предпочитают и как ловят рыбу, — выработались приспособления, позволяющие им занимать различные ниши в пределах одной и той же отмели.

Однако, желая выяснить, работает ли принцип конкурентного исключения в какой-либо конкретной ситуации, мы можем столкнуться с очень серьёзной методологической проблемой. Рассмотрим, например, случай с саламандрами из работы Хейрстона. В этом примере — два вида сухопутных саламандр Plethodon glutinosus и Plethodon jordani, обитающих в южной части Аппалачских гор в США. Обычно P. jordani встречается на больших высотах, чем P. glutinosus, но в некоторых районах зоны их обитания перекрывались. Важным моментом является то, что неблагоприятное воздействие со стороны другого вида исходно испытывали особи обоих видов. После удаления одного из видов у оставшегося наблюдалось значительное увеличение численности и (или) плодовитости и (или) выживаемости. Из этого следует, что на контрольных площадках и в других местах совместного обитания эти виды обычно конкурировали друг с другом, но все же существовали.

18/

Пласти́чность — способность организма существовать в определённом диапазоне значений экологического фактора. Пластичность определяется нормой реакции.

По степени пластичности по отношению к отдельным факторам все виды подразделяются на три группы:

  • Стенотопы — виды, способные существовать в узком диапазоне значений экологического фактора. Например, большинство растений влажных экваториальных лесов.
  • Эвритопы — широкопластичные виды, способные осваивать различные местообитания, например, все виды-космополиты.
  • Мезотопы занимают промежуточное положение между стенотопами и эвритопами.

Следует помнить, что вид может быть, например, стенотопом по одному фактору и эвритопом — по другому и наоборот. На







Дата добавления: 2015-03-11; просмотров: 957. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия