Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сортировка бинарными вставками





 

Сортировку простыми вставками можно немного улучшить: поиск "подходящего места" в упорядоченной последовательности можно вести более экономичным способом, который называется Двоичный поиск в упорядоченной последовательности. Он напоминает детскую игру "больше-меньше": после каждого сравнения обрабатываемая последовательность сокращается в два раза.

 

Пусть, к примеру, нужно найти место для элемента 7 в таком массиве:

 

[2 4 6 8 10 12 14 16 18]

 

Найдем средний элемент этой последовательности (10) и сравним с ним семерку. После этого все, что больше 10 (да и саму десятку тоже), можно смело исключить из дальнейшего рассмотрения:

 

[2 4 6 8] 10 12 14 16 18

 

Снова возьмем середину в отмеченном куске последовательности, чтобы сравнить ее с семеркой. Однако здесь нас поджидает небольшая проблема: точной середины у новой последовательности нет, поэтому нужно решить, который из двух центральных элементов станет этой "серединой". От того, к какому краю будет смещаться выбор в таких "симметричных" случаях, зависит окончательная реализация нашего алгоритма. Давайте договоримся, что новой "серединой" последовательности всегда будет становиться левый центральный элемент. Это соответствует вычислению номера "середины" по формуле

 

nomer_sred:= (nomer_lev + nomer_prav)div 2

 

Итак, отсечем половину последовательности:

 

2 4 [6 8] 10 12 14 16 18

 

И снова:

 

2 4 6 [8] 10 12 14 16 18

2 4 6][8 10 12 14 16 18

 

Таким образом, мы нашли в исходной последовательности место, "подходящее" для нового элемента. Если бы в той же самой последовательности нужно было найти позицию не для семерки, а для девятки, то последовательность границ рассматриваемых промежутков была бы такой:

 

[2 4 6 8] 10 12 14 16 18

2 4 [6 8] 10 12 14 16 18

2 4 6 [8] 10 12 14 16 18

2 4 6 8][10 12 14 16 18

 

Из приведенных примеров уже видно, что поиск ведется до тех пор, пока левая граница не окажется правее(!) правой границы. Кроме того, по завершении этого поиска последней левой границей окажется как раз тот элемент, на котором необходимо закончить сдвиг "хвоста" последовательности.

 

Будет ли такой алгоритм универсальным? Давайте проверим, что же произойдет, если мы станем искать позицию не для семерки или девятки, а для единицы:

 

[2 4 6 8] 10 12 14 16 18

[2] 4 6 8 10 12 14 16 18

][2 4 6 8 10 12 14 16 18

 

Как видим, правая граница становится неопределенной - выходит за пределы массива. Будет ли этот факт иметь какие-либо неприятные последствия? Очевидно, нет, поскольку нас интересует не правая, а левая граница.

 

"А что будет, если мы захотим добавить 21?" - спросит особо въедливый читатель. Проверим это:

 

2 4 6 8 10 [12 14 16 18]

2 4 6 8 10 12 14 [16 18]

2 4 6 8 10 12 14 16 [18]

2 4 6 8 10 12 14 16 18][

 

Кажется, будто все плохо: левая граница вышла за пределы массива; непонятно, что нужно сдвигать...

 

Вспомним, однако, что в реальности на (N+1)-й позиции как раз и находится вставляемый элемент (21). Таким образом, если левая граница вышла за рассматриваемый диапазон, получается, что ничего сдвигать не нужно. Вообще же такие действия выглядят явно лишними, поэтому от них стоит застраховаться, введя одну дополнительную проверку в текст алгоритма.

 







Дата добавления: 2015-03-11; просмотров: 443. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия