Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Развитие логического мышления на уроках математики





Математика способствует развитию творческого мышления, заставляя искать решения нестандартных задач, размышлять над парадоксами, анализировать содержание условий теорем и суть их доказательств, изучать специфику работы творческой мысли выдающихся ученых. В математике логическая строгость и стройность умозаключений призвана воспитывать общую логи­ческую культуру мышления; и основным моментом воспитатель­ной функции математического образования считается развитие у учащихся способностей к полноценности аргументации. В обы­денной жизни и в ряде естественнонаучных дискуссий аргумен­тацию почти не удается сделать исчерпывающей, в математике же дело обстоит иначе: “Здесь аргументация, не обладающая характером полной, абсолютной исчерпанности, оставляющая хотя бы малейшую возможность обоснованного возражения, бес­пощадно признается ошибочной и отбрасывается как лишенная какой бы то ни было силы... Изучая математику, школьник впер­вые в своей жизни встречает столь высокую требовательность к полноценности аргументации”'. Школьники приучаются к вза­имной критике; ученик, который “отобьется” от всех возражений своих товарищей, почувствует, что именно логическая полно­ценность аргументации была тем оружием, которое дало ему эту победу. А раз почувствовав это, он неизбежно научится ува­жать это оружие и, даже находясь в других ситуациях (в споре с

________________________

'Хинчин А.Я. О воспитательном эффекте уроков математики. // Математика как профессия. М., 1980. С. 36.

 

другими или в своем “одиноком мышлении”), будет искать точную, полноценную аргументацию, что значительно повыситегологическую культуру. А. Я. Хинчин сформулировал некоторые конкретные требования, выполнение которых обеспечивает полноту аргументации. Среди них - борьба против незаконных обобщений и необоснованных аналогии, борьба за полноту дизъ­юнкций, за полноту и выдержанность классификаций.

При построении классификаций необходимо соблюдать пра­вила деления понятий: классификация должна проводиться по одному существенному основанию, члены классификации дол­жны исключать друг друга, классификация должна быть пол­ной. На уроках математики воспитывается потребность осуще­ствлять правильные классификации.

Математический стиль мышления, по характеристике А. Я. Хинчина, определяется следующими особенностями:

1) доведенное до предела доминирование логической схемы рассуждения;

2) лаконизм, сознательное стремление всегда находить крат­чайший из ведущих к данной цели логический путь;

3) четкая разбивка хода рассуждений на случаи и подслучаи;

4) скрупулезная точность символики. Указанные черты сти­ля математического мышления способствуют поднятию общей культуры мышления школьников, развитию их интеллектуально­го потенциала.

На уроках математики учащиеся оперируют всеми формами мышления: понятиями, суждениями, умозаключениями.







Дата добавления: 2015-03-11; просмотров: 753. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия