Закон корреляции
Живой организм представляет единое целое, в котором все части и органы взаимосвязаны. Когда в эволюционном процессе изменяются строение и функции одного органа, то это неизбежно влечет соответственные или, как говорят, коррелятивные изменения и в других органах, связанных с первыми физиологически, морфологически, через наследственность и т.д. Пример:Одним из самых существенных, прогрессивных изменений в процессе эволюции членистоногих было появление у них мощного наружного кутикулярного скелета. Это неизбежно отразилось на многих других органах - сплошной кожномускульный мешок не мог функционировать при жестком наружном панцире и распался на отдельные мускульные пучки; вторичная полость тела утратила свое опорное значение, и ее сменила имеющая иное происхождение смешанная полость тела (миксоцель), выполняющая в основном трофическую функцию; рост тела принял периодический характер и стал сопровождаться линьками и т.д. У насекомых отчетливо выступает корреляция между органами дыхания и кровеносными сосудами. При сильном развитии трахей, доставляющих кислород непосредственно к месту его потребления, кровеносные сосуды становятся излишними и исчезают. М.Мильн-Эдвардса (1851) Мильн-Эдвардс (1800–1885)-французский зоолог, иностранный член корреспондент Петербургской АН (1846), один из основоположников морфофизиологических исследований морской фауны. Ученик и последователь Ж. Кювье. Эволюция организмов всегда сопровождается дифференциацией частей и органов. Дифференциация состоит в том, что первоначально однородные части организма постепенно все более отличаются друг от друга как по форме, так и отправлениям или подразделяются на разные по функции части. Специализируясь для выполнения определенной функции, они в то же время утрачивают способность выполнять иные функции и тем самым становятся в большую зависимость от других частей организма. Следовательно, дифференциация всегда приводит не только к усложнению организма, но и к подчинению частей целому - одновременно с морфофизиологическим расчленением организма происходит обратный процесс формирования гармоничного целого, называемый интеграцией.
Вопрос Биогенетический закон Геккеля-Мюллера (также известен под названиями «закон Геккеля», «закон Мюллера-Геккеля», «закон Дарвина-Мюллера-Геккеля», «основной биогенетический закон»): каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденные его предками или его видом (филогенез). Сыграл важную роль в истории развития науки, однако в настоящее время в своем исходном виде не признается современной биологической наукой. По современной трактовке биогенетического закона, предложенной русским биологом А. Н. Северцовым в начале 20 века, в онтогенезе происходит повторение признаков не взрослых особей предков, а их зародышей. Содержание Фактически «биогенетический закон» был сформулирован ещё задолго до возникновения дарвинизма. Немецкий анатом и эмбриолог Мартин Ратке (1793—1860) в 1825 г. описал жаберные щели и дуги у эмбрионов млекопитающих и птиц — один из наиболее ярких примеров рекапитуляциии. В 1828 году Карл Максимович Бэр, основываясь на данных Ратке и на результатах собственных исследований развития позвоночных, сформулировал закон зародышевого сходства: «Эмбрионы последовательно переходят в своем развитии от общих признаков типа ко все более специальным признакам. Позднее всего развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, развитие завершается появлением характерных особенностей данной особи». Бэр не придавал этому «закону» эволюционного смысла (он до конца жизни так и не принял эволюционного учения Дарвина), однако позднее этот закон стал рассматриваться как «эмбриологическое доказательство эволюции» (см. Макроэволюция) и свидетельство происхождения животных одного типа от общего предка. «Биогенетический закон» как следствие эволюционного развития организмов впервые был сформулирован (довольно нечётко) английским естествоиспытателем Чарльзом Дарвином в его книге «Происхождение видов» в 1859 г: «Интерес эмбриологии значительно повысится, если мы будем видеть в зародыше более или менее затененный образ общего прародителя, во взрослом или личиностном его состоянии, всех членов одного и того же большого класса» За 2 года до формулировки Эрнстом Геккелем биогенетического закона сходную формулировку предложил на основе своих исследований развития ракообразных работавший в Бразилии немецкий зоолог Фриц Мюллер[6]. В своей книге «За Дарвина» (Für Darwin), изданной в 1864 году, он выделяет курсивом мысль: «историческое развитие вида будет отражаться в истории его индивидуального развития». Краткая афористичная формулировка этого закона была дана немецким естествоиспытателем Эрнстом Геккелем в 1866 г. Краткая формулировка закона звучит следующим образом: Онтогенез есть рекапитуляция филогенеза (во многих переводах — «Онтогенез есть быстрое и краткое повторение филогенеза»). Примеры выполнения биогенетического закона Яркий пример выполнения биогенетического закона — развитие лягушки, включающее в себя стадию головастика, который по своему строению гораздо больше похож на рыб, чем на земноводных: У головастика, как и у низших рыб и рыбьих мальков, основой скелета служит хорда, только впоследствии в туловищной части обрастающая хрящевыми позвонками. Череп у головастика хрящевой, и к нему примыкают хорошо развитые хрящевые дуги; дыхание жаберное. Кровеносная система также построена по рыбьему типу: предсердие ещё не разделилось на правую и левую половины, кровь в сердце поступает только венозная, а оттуда через артериальный ствол идёт к жабрам. Если бы развитие головастика остановилось на этой стадии и не шло дальше, мы должны были бы без всяких колебаний отнести такое животное к надклассу рыб.[7] Зародыши не только земноводных, но и всех без исключения позвоночных животных также имеют на ранних стадиях развития жаберные щели, двухкамерное сердце и другие признаки, характерные для рыб. Например, птичий зародыш в первые дни насиживания также представляет собой хвостатое рыбообразное существо с жаберными щелями. На этой стадии будущий птенец обнаруживает сходство и с низшими рыбами, и с личинками амфибий, и с ранними стадиями развития других позвоночных животных (в том числе и человека[7][8]). На последующих стадиях развития зародыш птицы становится похожим на пресмыкающихся: И пока у куриного зародыша до конца первой недели и задние, и передние конечности имеют вид одинаковых лапок, пока хвост ещё не успел исчезнуть, а из сосочков ещё не сформировались перья, он по всем своим признакам стоит ближе к пресмыкающимся, чем к взрослым птицам.[7] Зародыш человека в ходе эмбриогенеза проходит через аналогичные стадии. Затем, за период примерно между четвертой и шестой неделями развития он превращается из рыбоподобного организма в организм, неотличимый от зародыша обезьяны, и только потом приобретает человеческие черты. Такое повторение признаков предков в ходе индивидуального развития особи Геккель назвал рекапитуляция. Закон необратимости эволюции Долло организм (популяция, вид) не может вернуться к прежнему состоянию, бывшему в ряду его предков, даже вернувшись в среду их обитания. Возможно приобретение лишь неполного ряда внешних, но не функциональных сходств со своими предками. Закон (принцип) сформулирован бельгийским палеонтологом Луи Долло в 1893 году. Бельгийский палеонтолог Л. Долло сформулировал общее положение, что эволюция представляет процесс необратимый. Это положение многократно затем подтверждалось и получило название закона Долло. Сам автор дал очень краткую формулировку закона необратимости эволюции. Он не всегда бывал правильно понят и вызывал иногда не вполне обоснованные возражения. По Долло, «организм не может вернуться, даже частично, к прежнему состоянию, уже осуществленному в ряду его предков». Примеры закона Долло Закон необратимости эволюции не следует расширять за пределы его применимости. Наземные позвоночные происходят от рыб, и пятипалая конечность есть результат преобразования парного плавника рыбы, Наземное позвоночное может вновь вернуться к жизни в воде, и пятипалая конечность при этом приобретает вновь общую форму плавника. Внутреннее строение плавнико-образной конечности — ласта сохраняет, однако, основные признаки пятипалой конечности, а не возвращается к исходному строению рыбьего плавника. Амфибии дышат легкими, Жаберное дыхание своих предков они утратили. Некоторые амфибии вернулись к постоянной жизни в воде и вновь приобрели жаберное дыхание. Их жабры представляют, однако, личиночные наружные жабры. Внутренние жабры рыбьего типа исчезли безвозвратно. У лазающих на деревьях приматов первый палец до известной степени редуцируется. У человека, происшедшего от лазающих приматов, первый палец нижних (задних) конечностей подвергся вновь значительному прогрессивному развитию (в связи с переходом к хождению на двух ногах), но не возвратился к некоторому исходному состоянию, а приобрел совершенно своеобразную форму, положение и развитие.
Следовательно, не говоря уже о том, что прогрессивное развитие нередко сменяется регрессом, и регресс иногда сменяется новым прогрессом. Однако никогда развитие не идет обратно по пройденному уже пути, и никогда оно не ведет к полному восстановлению прежних состояний.
Действительно, организмы, переходя в прежнюю среду обитания, не возвращаются полностью к предковому состоянию. Ихтиозавры (рептилии) приспособились к обитанию в воде. При этом их организация осталась типично рептильной. То же самое и крокодилы. Млекопитающие, обитающие в воде (киты, дельфины, моржи, тюлени), сохранили все особенности, характерные для этого класса животных. Закон олигомеризации органов по В.А. Догелю У многоклеточных животных в ходе биологической эволюции постепенно происходит уменьшение числа первоначально обособленных органов, выполняющих сходные или одинаковые функции. При этом органы могут дифференцироваться и каждый из них начинает выполнять разные функции. Открыт В. А. Догелем: «По мере дифференциации происходит олигомеризация органов: они приобретают определенную локализацию, а число их все более уменьшается (с прогрессивной морфофизиологической дифференцировкой остающихся) и становится постоянным для данной группы животных» Для типа кольчатые черви сегментация тела имеет множественный, неустановившийся характер, все сегменты однородны. У членистоногих (произошли от кольчатых червей) число сегментов: 1. в большинстве классов сокращается 2. становится постоянным 3. отдельные сегменты тела, объединяемые обычно в группы (голова, грудь, брюшко и т.п.), специализируются на выполнении определенных функций.
ПРИМЕР. «Свёртывание в биологии соответствует олигомеризации - объединению сходных частей. Упрощение чрезвычайно широко распространено у паразитов. Свёртывание или вымирание (инволюция) закономерный атрибут эволюции. Часто в природе упрощение происходит без объединения, путём простой редукции.
|