Студопедия — Химическая структура и питательные потребности бактерий
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Химическая структура и питательные потребности бактерий






Клетка — универсальная единица живой материи. По химическому составу у прокариотических и эукариотических клеток нет существенных отличий. Для осуществления биосинтети­ческих реакций бактериям необходимы химические элементы и дополнительные факторы роста. Потребность микроорганизма в определенных химических элементах и ростовых факторах — стабильный признак, который исполь­зуется для идентификации бактерий, а также при изготовлении питательных сред.

Химические элементы, входящие в состав бактерий, можно разделить на три группы: биогенные химические элементы, макроэлементы и микроэлементы.

1. Биогенные химические элементы (С, О, N, H). На их долю приходится 95 % сухого остатка, в т.ч. C — 50 %, O — 20 %, N — 15 %, H — 10 %. Это основные химические элементы, необходимые для синтеза органических соединений. Кислород и водород не лимитируются, их микроорганизмы могут получать из воды и других соединений.

По способности усваивать источники углерода микроорганизмы де­лятся на 3 группы:

А. Автотрофы(от греч. auto — сам, trophe — питание). Буквальный перевод «сам питаюсь». Извлекают углерод из простых неорганических соединений (обычно из СО2 или карбонатов), не нуждаются в органических соединениях и энергии. Среди автотрофов нет патогенных для человека микроорганизмов.

Б. Гетеротрофы (от греч. heteros — другой, trophe — питание). Буквальный перевод «питаемый другими». Усваивают углерод из сложных органиче­ских соединений различной химической природы (гексоз, спиртов, аминокислот, органических кислот). Гетеротрофов делят на:

метатрофы (гнилостные бактерии, грибы, дрожжи), усваивающие углерод из мертвых органических соединений; широко распространены в почве, играют веду­щую роль при разложении органических останков; являются сапрофитами.

паратрофы,усваивающие углерод в условиях живого организма, являются паразитами, среди которых различаютоблигатных паразитов (риккетсии, хламидии, вирусы), живущих только в живой клетке, и факультативных (большинство патогенных бактерий), которых можно выращивать на искусственных питательных средах.

В. Миксотрофы— микроорганизмы, способные переключаться с автотрофного на гетеротрофный путь обмена веществ и энергии.

Азот содержится в клетке в восстановленной форме в виде аминогрупп. Для синтеза азотсодержащих соединений (ами­нокислот, пуринов, пиримидинов, некоторых витаминов) микроорга­низмы нуждаются в доступном источнике азота. По способности усваивать источники азота микроорганизмы де­лятся на 2 группы:

А. Аминоаутотрофыусваивают азот из неорганических соединений: азотфиксирующие бактерии (клубеньковые) используют азот воздуха; аммонифицирующие бактерии в качестве источника азота используют соли аммония; нитрифицирующие бактерии — аммиак и его соли превращают в азотную, а затем в азотистую кислоту. Денитрофицирующие бактерии в качестве источника азота используют нитраты и нитриты, образуя из них молекулярный азот воздуха. В группе аминоаутотрофов нет патогенных для человека микроорганизмов.

Б. Аминогетеротрофы извлекают азот из органических соединений (аминокислот, пептонов, белков) или используют минеральные источники азота с добавлением несинтезируемых ими аминокислот. К этой группе принадлежат многие виды патогенных бактерий.

2. Макроэлементысера, фосфор, калий, кальций, магний, хлор, натрий. На них приходится около 5 % сухого остатка.

3. Микроэлементы (зольные элементы, следовые эле­менты) — марганец, молибден, цинк, медь, кобальт, никель, железо, ванадий, бор, йод, селен, кремний, вольфрам. На микроэлементы приходятся доли процента, однако они являются активаторами ферментов и имеют важное значение в обменных процессах. Большинство микроэлементов вносят в питательную среду в качестве примесей в солях макроэлементов либо попадает в питательную среду из стек­ла лабораторной посуды, с водой и с пылью.

 

Химические элементы входят в состав различных органических и неорганических веществ. Синтез этих веществ контролируется генетически. Некоторые вещества бактериальная клетка может получать из окружающей среды или из организма хозяина.

Органические вещества бактериальной клетки представлены белками, нуклеиновыми кислотами, углеводами, липидами.

Белки составляют 40–80 % сухой массы бактерий и встречаются во всех структурных элементах клетки. Белки бактерий делятся структурные (составляют основу структур клетки и обладают антигенными свойствами) и функциональные (их большая часть, они обладают свойствами ферментов). Белки могут быть простые (протеины) и сложные (протеиды), в чистом виде или в комплексе с липидами, углеводами, нуклеиновыми кислотами.

В состав белков бактерий входят как обычные для эукариотов аминокислоты, так и оригинальные — диаминопимелиновая кислота, Dаланин, Dглютанин, входящие в состав пептидогликанов и капсул некоторых бактерий. Только в спорах находится дипиколиновая кислота, с которой связана высокая резистентность спор. Жгутики построены из белка флагеллина, обладающего сократительной способностью и выраженными антигенными свойствами. Фимбрии содержат особый белок — пилин.

Пептидную природу имеют капсулы представителей рода Bacillus, возбудителя чумы, поверхностные антигены ряда бактерий, в том числе стафилококков и стрептококков. Белок А — специфический белок S. aureus. Белок М — специфический белок гемолитических стрептококков серогруппы А, позволяющий дифференцировать серовары (около 100), что имеет эпидемиологическое значение.

Ряд белков содержит наружная мембрана Грам- бактерий. Напр., порины, образующие диффузные поры, через которые в клетку проникают мелкие гидрофильные молекулы.

Нуклеиновые кислоты (ДНК и разные типы РНК) составляют около 18% сухой массы бактерий, определяют наследственность и изменчивость. Микроорганизмы отличаются по структуре нуклеиновых кислот, содержанию азотистых оснований. Содержание нуклеиновых кислот зависит от условий культивирования, фаз роста, физиологического и функционального состояния клеток. Содержание ДНК в клетке более постоянно, чем РНК. Нуклеотидный состав ДНК не изменяется в процессе развития бактерии, видоспецифичен и используется как один из важнейших таксономических признаков.

РНК находятся в одноцепочечной форме, главным образом, в рибосомах (рРНК составляют 80–85 %), в то время как т(транспортные)РНК — 10 %, м(матричные)РНК — 1–2 %. ДНК может находиться в ядерном аппарате (хромосомная ДНК) или в плазмидах (внехромосомная ДНК).

Углеводы составляют около 16 % сухой массы клетки, представлены простыми (моно- и дисахаридами, полисахаридами) и комплексными соединениями. Углеводы встречаются чаще в виде полисахаридов, которые могут быть экзо- и эндоклеточными. Среди экзоклеточных полисахаридов выделяют структурные (входят в состав капсул, клеточной стенки) и истинно экзополисахариды (выходят во внешнюю среду). Эндоклеточные полисахариды — располагаются в цитоплазме, это запасные питательные вещества клетки (крахмал, гликоген и др.). Углеводы выполняют также антигенную функцию.

Липиды представлены фосфолипидами, жирными кислотами, восками и глицеридами. Функции липидов: антигенная и структурная. Липиды (фосфолипиды и стерины) входят в состав ЦПМ (липидный бислой), наружной мембраны Грам- бактерий и ЦП. Содержание липидов у большинства бактерий не более 10 %, наибольшее количество липидов — у микобактерий (до 40 %).

В состав липидов входят различные жирные кислоты, весьма специфичные для разных групп микроорганизмов. Их определение имеет в ряде случаев диагностическое значение, напр., у анаэробов, микобактерий. У микобактерий туберкулеза в составе липидов имеются кислотоустойчивые жирные кислоты — фтионовая, миколовая и др. Высокое содержание липидов и их состав определяют многие свойства микобактерий туберкулеза: их устойчивость к кислотам, щелочам и спиртам; трудную окрашиваемость красителями; высокую резистентность во внешней среде и патогенность.

Тейхоевые кислоты встречаются в КС Грам+ бактерий. Представляют собой водорастворимые линейные полимеры, содержащие остатки глицерина или рибола, связанные фосфодиэфирными связями. С тейхоевыми кислотами связаны главные поверхностные антигены ряда Грам+ бактерий.

Липополисахарид (один из основных компонентов КС Грам- бактерий) — соединение липида с полисахаридом.

Неорганические компоненты бактериальной клетки — вода и минеральные вещества.

 

Факторы роста бактерий близки к витаминам животных и растений, в ничтожно малых количествах входят в состав ферментов и других соединений. Факторы роста необходимы для жизнедеятельности труднокультивируемых бактерий, но сами бактерии эти факторы не синтезируют и получают извне. К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединения.

Аминокислоты. Многие бактерии нуждаются в незаменимых аминокислотах (одной или нескольких), являющихся составными частями белков. Напр., клостридии не могут самостоятельно синтезировать лейцин и тирозин, а стрептококки — лейцин и ар­гинин.

Пуриновые и пиримидиновые основания (нуклеотиды: аденин, гуанин, цитозин, урацил) и их производные нуклеозиды (с фосфорной кислотой) являются составными частями нуклеиновых кислот. Они являются факторами роста для разных видов стрептококков, некоторые азотистые основа­ния нужны для роста стафилококков, в нуклеотидах нуждаются некоторые виды микоплазм.

Компоненты фосфолипидов — жирные кис­лоты — нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим стеринам, что от­личает их от других прокариот.

Витамины, в основномгруппы В и К, входят в состав коферментов или их простетических групп и участвуют в каталитических функциях, поэтому они необходимы только в очень малых количествах. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ; золотистый стафилококк, пневмококк, бруцеллы — в тиамине, входящем в состав пирофосфата; некото­рые виды стрептококков, бациллы столбняка — в пантотеновой кис­лоте, являющейся составной частью кофермента КоА. Факторами роста для многих бактерий являются фолиевая кис­лота, биотин; гемы — компоненты цитохромов — необходимы гемофильным бактериям, микобактериям туберкулеза.







Дата добавления: 2015-04-16; просмотров: 1543. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия