Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Позиционные системы счисления





Если значение цифры или символа зависит от позиции в ряду цифр или символов изображающих число, то такая система счисления называется позиционной. Примером позиционной системы счисления является используемая нами десятичная система счисления. В ней любое число записывается с помощью десяти цифр: {0,1,2,3,4,5,6,7,8,9}. Например, в записи 777 цифра 7 встречается три раза, но в каждой позиции она имеет разный смысл: крайняя левая цифра 7 означает сотни, следующая - десятки, и следующая цифра 7 - единицы. Позиционные системы счисления более удобны для вычислительных операций, поэтому они получили наибольшее распространение.

Количество используемых цифр называется основанием позиционной системы счисления. Место для цифры в числе называется разрядом, а количество цифр в числе – разрядностью числа. Крайняя слева цифра называется цифрой старшего разряда, а крайняя справа – цифрой младшего разряда.

Позиционная система счисления характеризуется основанием. Основание позиционной системы счисления – количество знаков или символов, используемых в разрядах для отображения числа в данной системе счисления. В современных компьютерах используют позиционные системы счисления с основаниями: 2, 8, 10, 16, 32.

Любое число в позиционной системе счисления со степенными весами разрядов можно представить в виде ряда:

 

  (2.6)

 

где, А q - запись числа в системе счисления с основанием q;

q - основание системы счисления;

ai - целое положительное число, меньше q;

n – число разрядов в целой части числа;

m – число разрядов в дробной части числа.

Таким образом, любое число можно разложить в сумму по степеням основания системы счисления в виде (2.6).

На практике используют сокращенную запись чисел, т.е.

(2.7)

 

Так как за основание q можно принять любое целое число, возможно множество позиционных систем, например, двоичная, восьмеричная, десятеричная, шестнадцатеричная. При этом в двоичной системе алфавит состоит из двух цифр: 0 и 1; в десятеричной – из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; в шестнадцатеричной – из цифр 0…9 и символов А, B, C, D, E, F для обозначения цифр 10, 11, 12, 13, 14, 15 соответственно.Восьмеричная система счисления используется в ЭВМ для кодирования команд в целях сокращения записи.

Шестнадцатеричная система счисления широко применяется для написания кодов операций констант и других специальных слов, не требующих перевода в десятичную систему счисления.

В таблице 2.1 приведен алфавит для четырех систем счисления.

Таблица 2.1 – Алфавит систем счисления

 

Основание Название Алфавит
  двоичная 0 1
  восьмеричная 0 1 2 3 4 5 6 7
  десятичная 0 1 2 3 4 5 6 7 8 9
  шестнадцатеричная 0 1 2 3 4 5 6 7 8 9 A B C D E F

 

Чем больше основание системы счисления, тем меньшее число разрядов требуется для представления данного числа, следовательно, и меньшее время для его передачи. Однако, с ростом основания существенно повышаются требования к аппаратуре формирования и распознавания элементарных сигналов, соответствующих различным символам. Логические элементы вычислительных устройств в этом случае должны иметь большее число устойчивых состояний.

Десятичная система счисления, привычная для нас в повседневной жизни, также не является наилучшей для использования в ЭВМ. Так как функциональные элементы с десятью устойчивыми состояниями имеют низкую скорость переключения и, таким образом, не могут удовлетворять требованиям, предъявляемым к ЭВМ по быстродействию.

В большинстве случаев в ЭВМ используют двоичные или двоично-кодированные системы счисления. Широкое распространение этих систем обусловлено тем, что элементы ЭВМ способны находиться лишь в одном из двух устойчивых состояний. Задача различения сигналов сводится в этом случае к задаче обнаружения (есть импульс или его нет), что значительно проще. Если одно из таких устойчивых состояний принято за 0, а другое – за 1, то достаточно просто изображаются разряды двоичного числа. Любому дискретному сообщению или знаку сообщения можно присвоить какой-либо порядковый номер Так будет получен один из кодов, основанный на данной системе счисления.

Таким образом, системы счисления используются для построения на их основе различных кодов в системах передачи, хранения и преобразования информации.

 







Дата добавления: 2015-04-16; просмотров: 717. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия