Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Позиционные системы счисления





Если значение цифры или символа зависит от позиции в ряду цифр или символов изображающих число, то такая система счисления называется позиционной. Примером позиционной системы счисления является используемая нами десятичная система счисления. В ней любое число записывается с помощью десяти цифр: {0,1,2,3,4,5,6,7,8,9}. Например, в записи 777 цифра 7 встречается три раза, но в каждой позиции она имеет разный смысл: крайняя левая цифра 7 означает сотни, следующая - десятки, и следующая цифра 7 - единицы. Позиционные системы счисления более удобны для вычислительных операций, поэтому они получили наибольшее распространение.

Количество используемых цифр называется основанием позиционной системы счисления. Место для цифры в числе называется разрядом, а количество цифр в числе – разрядностью числа. Крайняя слева цифра называется цифрой старшего разряда, а крайняя справа – цифрой младшего разряда.

Позиционная система счисления характеризуется основанием. Основание позиционной системы счисления – количество знаков или символов, используемых в разрядах для отображения числа в данной системе счисления. В современных компьютерах используют позиционные системы счисления с основаниями: 2, 8, 10, 16, 32.

Любое число в позиционной системе счисления со степенными весами разрядов можно представить в виде ряда:

 

  (2.6)

 

где, А q - запись числа в системе счисления с основанием q;

q - основание системы счисления;

ai - целое положительное число, меньше q;

n – число разрядов в целой части числа;

m – число разрядов в дробной части числа.

Таким образом, любое число можно разложить в сумму по степеням основания системы счисления в виде (2.6).

На практике используют сокращенную запись чисел, т.е.

(2.7)

 

Так как за основание q можно принять любое целое число, возможно множество позиционных систем, например, двоичная, восьмеричная, десятеричная, шестнадцатеричная. При этом в двоичной системе алфавит состоит из двух цифр: 0 и 1; в десятеричной – из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; в шестнадцатеричной – из цифр 0…9 и символов А, B, C, D, E, F для обозначения цифр 10, 11, 12, 13, 14, 15 соответственно.Восьмеричная система счисления используется в ЭВМ для кодирования команд в целях сокращения записи.

Шестнадцатеричная система счисления широко применяется для написания кодов операций констант и других специальных слов, не требующих перевода в десятичную систему счисления.

В таблице 2.1 приведен алфавит для четырех систем счисления.

Таблица 2.1 – Алфавит систем счисления

 

Основание Название Алфавит
  двоичная 0 1
  восьмеричная 0 1 2 3 4 5 6 7
  десятичная 0 1 2 3 4 5 6 7 8 9
  шестнадцатеричная 0 1 2 3 4 5 6 7 8 9 A B C D E F

 

Чем больше основание системы счисления, тем меньшее число разрядов требуется для представления данного числа, следовательно, и меньшее время для его передачи. Однако, с ростом основания существенно повышаются требования к аппаратуре формирования и распознавания элементарных сигналов, соответствующих различным символам. Логические элементы вычислительных устройств в этом случае должны иметь большее число устойчивых состояний.

Десятичная система счисления, привычная для нас в повседневной жизни, также не является наилучшей для использования в ЭВМ. Так как функциональные элементы с десятью устойчивыми состояниями имеют низкую скорость переключения и, таким образом, не могут удовлетворять требованиям, предъявляемым к ЭВМ по быстродействию.

В большинстве случаев в ЭВМ используют двоичные или двоично-кодированные системы счисления. Широкое распространение этих систем обусловлено тем, что элементы ЭВМ способны находиться лишь в одном из двух устойчивых состояний. Задача различения сигналов сводится в этом случае к задаче обнаружения (есть импульс или его нет), что значительно проще. Если одно из таких устойчивых состояний принято за 0, а другое – за 1, то достаточно просто изображаются разряды двоичного числа. Любому дискретному сообщению или знаку сообщения можно присвоить какой-либо порядковый номер Так будет получен один из кодов, основанный на данной системе счисления.

Таким образом, системы счисления используются для построения на их основе различных кодов в системах передачи, хранения и преобразования информации.

 







Дата добавления: 2015-04-16; просмотров: 717. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия