Основные направления экономии энергии в зданиях
При этом привлечение нетрадиционных источников энергии (солнца, ветра, вторичных ресурсов и т.п.), по расчетам этих же специалистов, может обеспечивать от 15% до 40% снижения энергопотребления ежегодно. Имея ввиду, что средняя норма прибыли в большинстве развитых стран мира составляет 10-15%, можно говорить о достаточно высокой экономической эффективности энергосберегающих мероприятий, что сообщает им очень важную сегодня коммерческую привлекательность.
Как видно, наиболее высокие показатели энергетической эффективности относятся к оптимизации работы систем инженерного обеспечения и использованию энергии природной среды. Однако, экономическая эффективность мероприятий, предполагаемых двумя этими направлениями деятельности, отнюдь не одинакова: результаты реализованных различными европейскими странами программ по энергосбережению в строительстве показывают, что сроки окупаемости большинства энергосберегающих технологий колеблются от 2 до 5 лет. Но при этом сроки окупаемости технологий, ориентированных на использование нетрадиционных источников энергии, составляют 8 - 20 лет, что, безусловно, существенно сдерживает их распространение. Однако, по мнению и отечественных, и зарубежных специалистов первоочередными задачами реконструкции российской недвижимости на пути улучшения ее энергетических характеристик являются: · оборудование инженерных систем всех зданий приборами контроля и учета поступления и расхода энергии, без чего невозможна оценка эффективности энергосберегающих мероприятий (срок окупаемости такого оборудования, как правило, не превышает 1.5 года); · тотальная модернизация оконных и дверных блоков (замена, установка дополнительных слоев остекления или стеклопакетов, герметизация): в среднем по России теплопотери через окна и двери составляют до 70% от объема теплопотерь через все другие ограждения, что является свидетельством недопустимо низких теплоизоляционных характеристик используемых конструкций. · Окна по-прежнему остаются весьма теплопроводными конструкциями, и это обстоятельство определило тенденцию к максимальному сокращению площади остекленных поверхностей (до минимально допустимых значений с точки зрения норм естественной освещенности). Например, по датским требованиям оптимальный процент остекления наружных ограждений зданий составляет 15-22% от их общей площади. Кроме того, во многих странах разработаны и широко используются различные конструктивные средства повышения теплоизоляционных свойств светопроемов. Наиболее простыми и эффективными из них являются: · так называемые ночные ставни - специальные трансформируемые конструкции в виде теплоизолирующих и теплоотражающих экранов (щитов, штор и т.п.), размещаемых, как правило, с наружной стороны светопроема и используемых в темное время суток; · вентилируемые окна - конструкция такого окна обеспечивает организованный приток наружного воздуха в помещение, по ходу которого этот воздух "подогревается" теплом, неизбежно теряемым теплопередачей через остекление, т.е. происходит утилизация происходящих через окно теплопотерь.
Последние годы наблюдается усиление тенденции к активному использованию архитектурно-градостроительных средств энергосбережения в строительстве, направленных на снижение теплопотерь через наружные ограждения зданий и повышение эффективности использования естественного света. Теплопотери в зданиях происходят, преимущественно, в виде дисперсии тепла наружными ограждениями, возникающей и усиливающейся при нарастании разницы температур внутреннего и наружного воздуха. Существенное значение имеет усиленная инфильтрация наружного (и соответственно, эксфильтрации внутреннего) воздуха под давлением ветра и вследствие возникновения в застройке различных аэродинамических эффектов. С другой стороны, было установлено, что объемно-планировочными и ландшафтными средствами можно добиться существенного снижения теплопотерь, в частности, за счет: 1. сокращения площади наружных ограждений относительно внутреннего объема здания, т.е. повышением его пространственной и объемной компактности. Например, минимальные соотношения площади поверхности к внутреннему объему имеют шар, цилиндр и куб - именно эти формы обеспечат предельное снижение дисперсии тепла зданием. 2. оптимизации площади светопроемов, объективно обладающих высокой теплопроводностью и потому являющихся основным источником теплопотерь в зданиях; 3. теплового зонирования отапливаемого объема здания и устройства вокруг него так называемых буферных пространств. Это неотапливаемые помещения с промежуточной (относительно внутренней и внешней среды) температурой. Наибольший эффект буферные пространства дают при размещении их в тех частях здания, где наблюдаются максимальные амплитуды температур отапливаемых помещений и внешней среды: в зоне покрытия (где функции буфера выполняет чердак) и у плохо прогреваемых солнцем стен северной ориентации (буфером могут являться различные хозяйственные пристройки, пристенные холодные шкафы и т.п. Кроме того, буферные пространства защищают ограждения от ветровых воздействий, исключая нежелательную "напорную" инфильтрацию наружного воздуха в отапливаемый объем здания, и от переувлажнения, влекущего, как правило, резкое ухудшение теплотехнических качеств ограждений и их ускоренное разрушение; 4. рассеивания воздушных потоков - использованием соответствующих пространственных и объемных форм ландшафта (в т.ч. зданий); известно, что кроме собственно скорости воздушного потока сила ветрового напора определяется углом падения потока на поверхность здания. Следовательно, наименьшее ветровое давление испытывают обтекаемые (аэродинамичные) - сферические, цилиндрические и др. криволинейные, а также коноидальные и пирамидальные (“эффект пирамиды”) объемные формы; 5. снижения скорости движения и турбулентности воздушных потоков вблизи зданий (их ограждающих конструкций) - например, использованием форм растительности в качестве естественных ветрозащитных барьеров. Известно, что растительные формы различной плотности и высоты способны весьма значительно сокращать скорость ветрового потока, обеспечивая при этом зоны "ветрового затишья" глубиной, равной 20 - 25 высотам такого растительного барьера; пристенная растительность также существенно снижает активность ветровых воздействий на здания (турбулентность воздушных потоков у наружных ограждений); суммарное снижение теплопотерь благодаря разумному использованию растительных форм ландшафта может достигать 40%. Одним из наиболее важных факторов современного архитектурного проектирования становится повышение эффективности использования естественного света. Открытие биологических свойств солнечной радиации, осознание первостепенной роли света в средообразовании произвели настоящий переворот в архитектуре 20-го века, в корне изменив традиционные принципы организации пространств всех уровней. Однако, развитие климатологической и гигиенической наук, с одной стороны, а также ужесточение экономических требований в строительстве, с другой, привели к необходимости нового переосмысления принципов организации естественного освещения пространств, следовательно, и норм градостроительного и объемного проектирования). В частности: 1. Исследованиями биологических свойств рассеянной радиации, проводившимися в Казанском мединституте, было установлено, что необходимый бактерицидный эффект, определяющий принятые нормы инсоляции помещений, может быть получен при воздействии только рассеянной радиации (т.е. и при северной ориентации светопроема). Это обусловлено тем, что ультрафиолетовая составляющая солнечного спектра, обеспечивающая этот эффект, не поглощается, а только рассеивается облаками, и "по своей максимальной величине рассеянная радиация ненамного уступает прямой, даже при южной ориентации светопроема", при этом двойное остекление не оказывает существенного влияния на проникание эффективной ультрафиолетовой радиации в помещение. Таким образом, необходимость облучения прямой солнечной радиацией будет определяться, преимущественно, требованиями психоэмоционального, светового и теплового комфорта; 2. Исследования закономерностей поступления солнечной радиации в помещения, проводившиеся отечественными учеными, показали, что "на всех широтах и при любой ориентации светопроема основные поступления эффективного облучения в помещения (60-70% от максимально возможных) происходят при разрывах между зданиями, равных двум высотам здания. Дальнейшее увеличение разрывов не дает существенного прироста"; при этом если на светопроем не падает тень от противостоящих зданий, то режим прямого облучения ничем не отличается от облучения при свободном горизонте; 3. Объективное развитие тенденции к увеличению ширины зданий (и следовательно, глубины помещений) привело к предельному снижению эффективности традиционных форм бокового естественного освещения (что и выражается огромными энергозатратами на освещение искусственное и ростом теплопотерь через сплошное остекление наружных ограждений). Насущной необходимостью является поиск специальных средств и приемов обеспечения помещений, расположенных в глубинных зонах зданий, естественным светом.
|