Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Войства определителей





Свойство (1)
Определитель не изменится, если все строки заменить соответствующими столбцами и наоборот.

Свойство (2)
При перестановке двух каких-либо строк или столбцов местами определитель изменяет знак.

Свойство (3)
Определитель равен нулю, если он имеет две равные строки (столбца).

Свойство (4)
Множитель, общий для всех элементов строки или столбца, можно выносить за знак определителя.

Свойство (5)
Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, то определитель не изменится.

Следствие из свойств 32.4 и 32.5: Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на некоторое число, то определитель не изменится.

Свойство (6)
Сумма произведений элементов какой-либо строки или столбца на алгебраические дополнения соответствующих элементов другой строки или столбца равна нулю.

 

 

21) Миноры матрицы Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента аij, определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij. Рассмотрим на примере определителя матрицы 3 - его порядка:

, тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель: При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы. Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

, знак перед произведением равен (-1)n, где n = i + j.

Минор Минором элемента матрицы n -го порядка называется определитель матрицы (n-1) -го порядка, полученный из матрицы А вычеркиванием i -й строки и j -го столбца.

При выписывании определителя (n-1) -го порядка, в исходном определителе элементы находящиеся под линиями в расчет не принимаются. Алгебраические дополнения Алгебраическим дополнением Аij элемента аij матрицы n -го порядка называется его минор, взятый со знаком, зависящий от номера строки и номера столбца:

то есть алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца – четное число, и отличается от минора знаком, когда сумма номеров строки и столба – нечетное число.

Пример 1. Найти алгебраические дополнения всех элементов матрицы

22) Пусть — матрица размера , и пусть выбраны любые строк матрицы с номерами и любые столбцов с номерами .

Определитель матрицы, получаемой из вычеркиванием всех строк и столбцов, кроме выбранных, называется минором -го порядка, расположенным в строках с номерами и столбцах с номерами . Он обозначается следующим образом:

А определитель матрицы, получаемой вычеркиванием только выбранных строк и столбцов из квадратной матрицы, называется дополнительным минором к минору :

где и — номера невыбранных строк и стобцов.

Алгебраическое дополнение минора определяется следующим образом:

где , .

Справедливо следующее утверждение.

Теорема Лапласа Пусть выбраны любые строк матрицы . Тогда определитель матрицы равен сумме всевозможных произведений миноров -го порядка, расположенных в этих строках, на их алгебраические дополнения. где суммирование ведётся по всевозможным номерам столбцов

Число миноров, по которым берётся сумма в теореме Лапласа, равно числу способов выбрать столбцов из , то есть биномиальному коэффициенту .

Так как строки и столбцы матрицы равносильны относительно свойств определителя, теорему Лапласа можно сформулировать и для столбцов матрицы.

Примеры [показать]

Разложение определителя по строке (столбцу) (Следствие 1)

Широко известен частный случай теоремы Лапласа — разложение определителя по строке или столбцу. Он позволяет представить определитель квадратной матрицы в виде суммы произведений элементов любой её строки или столбца на их алгебраические дополнения.

Пусть — квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам:

Разложение по -й строке: Разложение по -му столбцу:

где — алгебраическое дополнение к минору, расположенному в строке с номером и столбце с номером . также называют алгебраическим дополнением к элементу .

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Примеры [показать]

Следствие 2 (фальшивое разложение определителя)

Сумма произведений всех элементов некоторой строки (столбца) матрицы А на алгебраические дополнения соответствующих элементов любой другой строки (столбца) равна нулю.

Доказательство. Рассмотрим сумму произведений всех элементов произвольной k-ой строки матрицы А на алгебраические дополнения соответствующих элементов любой другой, скажем, i-ой строки матрицы А. Пусть A′ – матрица, у которой все строки, кроме i-ой, такие же, как у матрицы А, а элементами i-ой строки матрицы A′ являются соответствующие элементы k-ой строки матрицы А. Тогда у матрицы A′ две одинаковые строки и, следовательно, по свойству матрицы об одинаковых строках имеем, что |A′| = 0. С другой стороны, по следствию 1 определитель |A′| равен сумме произведений всех элементов i-ой строки матрицы A′ на их алгебраические дополнения. Заметим, что алгебраические дополнения элементов i-ой строки матрицы A′ совпадают с алгебраическими дополнениями соответствующих элементов i-ой строки матрицы А. Но элементами i-ой строки матрицы A′ являются соответствующие элементы k-ой строки матри- цы А. Таким образом, сумма произведений всех элементов i-ой строки матрицы A′ на их алгебраические дополнения с одной стороны равна нулю, а с другой стороны равна сумме произведений всех элементов k-ой строки матрицы А на алгебраические дополнения соответствующих элементов i-ой строки матрицы А.

23) Ма́трица — математический объект, которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. пределение. Суммой матриц А=(аij) и B=(bij) одинаковых размеров называется матрица С=(сij) тех же размеров, такая что cij=aij+bij для всех i и j.

Определение. Произведение матрицы А на число l называется матрица lА=(l аij), получаемая умножением всех элементов матрицы А на число l. Разность матриц А и В можно определить равенством А-В=А+(-1)В. Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы/ Найдем произведения матриц АВ и ВА, если они существуют.

1. , .

2. , .

Обратная матрица Квадратная матрица В называется обратной по отношению к матрице А такого же размера,если АВ = ВА = Е. Разность A − B двух матриц одинакового размера определя-

ется с помощью операции умножения матрицы B на число −1 и последующего

сложения матриц A и (−1)B, т. е.

A − B = A + (−1)B.

24) Теорема об определителе произведения квадратных матриц.

Теорема. Определитель произведения квадратных матриц равен произведению

определителей этих матриц.

Для матриц порядка2 утверждение, содержащееся в этой теореме, можно доказать

следующим образом:

 

 

25) Определение 4. Произведением двух прямоугольных матриц АВ называется матрица Су которой элемент , стоящий на пересечении -й строки и -го столбца, равен «произведению» -й строки первой матрицы на -й столбец второй матрицы : (11) Заметим, что операция умножения двух прямоугольных матриц выполнима лишь в том случае, когда число столбцов в первом сомножителе равно числу строк во втором. 1. Правило Крамера

Пусть составленный из коэффициентов при неизвестных определитель:
.
Тогда система (1) имеет единственное решение
,
где определитель Δ k (k=1,2,… n) получен из определителя Δ путем замены k -го столбца столбцом свободных членов системы (1).
Пример. Решить систему линейных уравнений по правилу Крамера:

Решение. Вычислим определители Δ, Δ1, Δ2, Δ3.





Тогда .
Ответ: х 1=1, х 2=0, х 3= -1.

 

26) Множество всех упорядоченных совокупностей по n чисел (х12,...,хn) называется арифметическим n-мерным пространством (Rn) Совокупность всех n -мерных векторов, рассматриваемая с определенными в ней операциями сложения и умножения на число, подчиняющимся 1–8, называется n-мерным линейным векторным пространством. Если координаты векторов – вещественные числа, то пространство называют арифметическим и обозначают Rn. Простейшие свойства

1. Векторное пространство является абелевой группой по сложению.

2. Нейтральный элемент является единственным, что вытекает из групповых свойств.

3. для любого .

4. Для любого противоположный элемент является единственным, что вытекает из групповых свойств.

5. для любого .

6. для любых и .

7. для любого .

 

27) Линейная зависимость и независимость векторов.

Пусть – векторы из некоторого линейного пространства.
Определение: Линейной комбинацией векторов , называется выражение вида: , где – действительные числа, называемые коэффициентами линейной комбинации.
Линейная комбинация дает в результате сложения векторов, умноженных на число , также вектор.
Примеры:
1. 2 (2,5,1) – 4 (1,3,0) + (0,0,1) = (0,-2,3);
2. 3 (5,4) – 5 (-1,2) +2 (-10,-1) = (0,0).
Последний пример показывает, что в некоторых случаях можно в результате линейной комбинации векторов получить нулевой вектор при ненулевых коэффициентах (при всех нулевых коэффициентах мы всегда получим ).
Определение. Система векторов называется линейно зависимой, если из этих векторов можно составить нулевую линейную комбинацию, когда хотя бы один из коэффициентов ее отличен от нуля. Так, в предыдущем примере векторы (5,4), (-1,2), (-10,-1) линейно зависимы.
Если система векторов линейно зависима, то хотя бы один вектор (при котором стоит отличный от нуля коэффициент) можно выразить линейно через остальные.
Если , то .
И наоборот, если вектор представлен в виде линейной комбинации остальных векторов , то он в совокупности с ними дает систему линейно зависимых векторов, т.к. в комбинации коэффициент .
Определение. Система векторов называется линейно независимой, если из этих векторов невозможно составить нулевую линейную комбинацию, в которой хотя бы один из коэффициентов был бы отличен от 0. Т.е. векторы будут линейно независимы, если равенство возможно лишь при всех . Очевидно, ни один из этих векторов нельзя выразить через остальные. Совокупность точек n-мерного пространства, для которых определено расстояние по формуле (1.1), называется n-мерным Евклидовым пространством. Свойства расстояния между двумя точками:

1. r(А,В) ³ 0, причем если r(А,В) = 0, следовательно, А = В.

2. r(А,В) = r(В,А) для всех точек А, В Î Rn,

3. r(А,C) £ r(A,В) + r(B,C) для всех точек А, В, C Î Rn,

 

28) Рангом системы строк (столбцов) матрицы с строк и столбцов называется максимальное число линейно независимых строк (столбцов). Несколько строк (столбцов) называются линейно независимыми, если ни одна из них не выражается линейно через другие. Ранг системы строк всегда равен рангу системы столбцов, и это число называется рангом матрицы.

Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля.

Строки и столбцы матрицы, элементы которых входят в базисный минор, линейно независимы. Любая строка (столбец) матрицы является линейной комбинацией этих строк (столбцов).

 

Доказательство (для строк).

1. Если бы базисные строки были линейно зависимыми, то с помощью эквивалентных преобразований из них можно было бы получить нулевую строку, что противоречит условию, что базисный минор не равен 0.

2. Строка, входящая в базисный минор, является линейной комбинацией его строк, в которой коэффициент при данной строке равен 1, а остальные коэффициенты равны 0.

Докажем это свойство для строки, не входящей в базисный минор.

Добавим к базисному минору эту строку (пусть ее номер – k) и любой столбец матрицы (пусть его номер – j). Затем разложим полученный определитель, равный 0 (так как его порядок больше ранга матрицы) по j-му столбцу:

Поскольку является базисным минором, поэтому, разделив полученное равенство на , найдем, что

для всех j=1,2,…,n, где . Следовательно, выбранная строка является линейной комбинацией базисных строк. Теорема доказана.

29) Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида

(1)

Система линейных уравнений от трёх переменных определяет набор плоскостей. Точка пересечения является решением.

Здесь — количество уравнений, а — количество неизвестных. x 1, x 2, …, xn — неизвестные, которые надо определить. a 11, a 12, …, amn — коэффициенты системы — и b 1, b 2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].

Система (1) называется однородной, если все её свободные члены равны нулю (b 1 = b 2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c 1, c 2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c 1(1), c 2(1), …, cn (1) и c 1(2), c 2(2), …, cn (2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

Критерий Кронекера и Капелли. Для того, чтобы система неоднородных линейных уравнений

имела решения необходимо и достаточно, чтобы

Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:

Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.






Дата добавления: 2015-04-16; просмотров: 1348. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия