Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства. · Число всех перестановок порядка равно числу размещений из n по n, то есть факториалу:





· Число всех перестановок порядка равно числу размещений из n по n, то есть факториалу:

· Композиция определяет операцию произведения на перестановках одного порядка: Относительно этой операции множество перестановок порядка n образует группу, которую называют симметрической и обычно обозначают .

· Любая группа является подгруппой группы перестановок множества элементов этой группы (теорема Кэли). При этом каждый элемент сопоставляется с перестановкой , задаваемой тождеством где g — произвольный элемент группы G, а — групповая операция.

19) ПодстановкиПусть M -- некоторое множество. Подстановкой на M назовем взаимно однозначное отображение $a:M\rightarrow M$ множества M на себя. Обозначим через S(M) множество всех подстановок на M. Группа подстановокПусть a и b -- две подстановки из S(M). Назовем произведением ab этих подстановок композицию отображений a, b, то есть ab -- такой элемент из S(M), что m(ab)=(ma)b для всех $m\in M$Теорема. Множество S(M) является группой относительно введенной операции умножения, то есть в S(M) есть единичный элемент e со свойством: ex=xe=x для любого $x\in S(M)$; для любого $x\in S(M)$ есть $y\in S(M)$, что xy=yx=e, и операция умножения ассоциативнаДоказательство. Нам необходимо проверить три аксиомы. В S(M) имеется единичный элемент -- это тождественное отображение, которое обозначим буквой e. Известно также, что для всякого взаимно однозначного отображения x множества M на M существует обратное отображение x-1, для которого xy=yx=e. Осталось проверить аксиому ассоциативности. Пусть a, b, c -- подстановки из $S(M),\ m$ -- элемент множества M. Вычисляя образ элемента m при отображениях (ab)c и a(bc), мы убеждаемся, что эти отображения совпадают:m((ab)c)=(m(ab))c=((ma)b)c,m(a(bc))=(ma)(bc)=((ma)b)c.

20)







Дата добавления: 2015-04-16; просмотров: 422. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия