Системы счисления. Начнем с некоторых общих замечаний относительно понятия число [12]
Начнем с некоторых общих замечаний относительно понятия число [12]. Можно считать, что любое число имеет значение (содержание) и форму представления. Значение числа задает его отношение к значениям других чисел ("больше", "меньше", "равно") и, следовательно, порядок расположения чисел на числовой оси. Форма представления, как следует из названия, определяет порядок записи числа с помощью предназначенных для этого знаков. При этом значение числа является инвариантом, т. е. не зависит от способа его представления. Это означает также, что число с одним и тем же значением может быть записано по-разному, т. е. отсутствует взаимно однозначное соответствие между представлением числа и его значением. В связи с этим возникают вопросы, во-первых, о формах представления чисел и, во-вторых, о возможности и способах перехода от одной формы к другой. Способ представления числа определяется системой счисления. Определение_________________________________________________ Система счисления — это правило записи чисел с помощью заданного набора специальных знаков — цифр. Людьми использовались различные способы записи чисел, которые можно объединить в несколько групп: унарная, непозиционные и позиционные. Унарная — это система счисления, в которой для записи чисел используется только один знак — | (вертикальная черта, палочка). Следующее число получается из предыдущего добавлением новой палочки: их количество (сумма) равно самому числу. Унарная система важна в теоретическом отношении, поскольку в ней число представляется наиболее простым способом и, следовательно, просты операции с ним. Кроме того, именно унарная система определяет значение целого числа количеством содержащихся в нем единиц, которое, как было сказано, не зависит от формы представления. Из непозиционных наиболее распространенной можно считать римскую систему счисления. В ней некоторые базовые числа обозначены заглавными латинскими буквами: 1 — I, 5 — V, 10 — X, 50 — L, 100 — С, 500 — D, 1000 – М. Все другие числа строятся комбинаций базовых в соответствии со следующими правилами: □ если цифра меньшего значения стоит справа от большей цифры, то их значения суммируются; если слева — то меньшее значение вычитается из большего; □ цифры I, X, C и М могут следовать подряд не более трех раз каждая; □ цифры V, L и D могут использоваться в записи числа не более одного раза. (Страница34) Например, запись XIX соответствует числу 19, MDXLIX — числу 1549. Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций. Отсутствие нуля и знаков для чисел больше М не позволяют римскими цифрами записать любое число (хотя бы натуральное). По указанным причинам теперь римская система используется лишь для нумерации. В настоящее время для представления чисел применяют, в основном, позиционные системы счисления. Определение_________________________________________________ Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр. Наиболее распространенной и привычной является система счисления, в которой для записи чисел используется 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, Число представляет собой краткую запись многочлена, в который входят степени некоторого другого числа — основания системы счисления. Например: 575, 15=5*102+7*101+5*100+1*10 - 1+5*10 - 2 В данном числе цифра 5 встречается трижды, однако значение этих цифр различно и определяется их положением (позицией) в числе. Количество цифр для построения чисел, очевидно, равно основанию системы счисления. Также очевидно, что максимальная цифра на 1 меньше основания. Причина широкого распространения именно десятичной системы счисления понятна — она происходит от унарной системы с пальцами рук в качестве "палочек", Однако в истории человечества имеются свидетельства использования и других систем счисления — пятеричной, шестеричной, двенадцатиричной, двадцатиричной и даже шестидесятиричной. Общим для унарной и римской систем счисления является то, что значение числа в них определяется посредством операций сложения и вычитания базисных цифр, из которых составлено число, независимо от их позиции в числе. Такие системы получили название аддитивных. В отличие от них позиционное представление следует считать аддитивно-мультипликативным, поскольку значение числа определяется операциями умножения и сложения. Главной же особенностью позиционного представления является то, что в нем посредством конечного набора знаков (цифр, разделителя десятичных разрядов и обозначения знака числа) можно записать неограниченное количество различных чисел. Кроме того, в позиционных системах гораздо легче, чем в аддитивных, осуществляются операции умножения и деления. Именно эти обстоятельства обуславливают доминирование позиционных систем при обработке чисел, как человеком, так и компьютером. По принципу, положенному в основу десятичной системы счисления, очевидно, можно построить системы с иным основанием. Пусть p — основание системы счисления. Тогда любое число Z (пока ограничимся только целыми числами), удовлетворяющее условию Z<pk (k>0, целое), может быть представлено в виде многочлена со степенями (при этом, очевидно, максимальный показатель степени будет равен k-1): (3.1) Из коэффициентов a j при степенях основания строится сокращенная запись числа: Индекс p числа Z указывает, что оно записано в системе счисления с основанием р: общее число цифр числа равно k. Все коэффициенты a j — целые числа, удовлетворяющие условию: 0< aj<р-1. Уместно задаться вопросом: каково минимальное значение р? Очевидно, р =1 невозможно, поскольку тогда все aj =0 и форма (3.1) теряет смысл. Первое допустимое значение р =2 — оно и является минимальным для позиционных систем. Система счисления с основанием 2 называется двоичной. Цифрами двоичной системы являются 0 и 1, а форма (3.1) строится по степеням 2. Интерес именно к этой системе счисления связан с тем, что, как указывалось выше, любая информация в компьютерах представляется с помощью двух состояний — 0 и 1, которые легко реализуются технически. Наряду с двоичной в компьютерах используются восьмеричная и шестнадцатеричная системы счисления — причины будут рассмотрены далее.
|