Морфологическая структура хромосом
Строение каждой хромосомы сугубо индивидуальное. Можно заметить также, что хромосомы обладают общими морфологическими признаками. Они состоят из двух нитей — хроматид, расположенных параллельно и соединенных между собой в одной точке, названной центромерой или первичной перетяжкой. На некоторых хромосомах можно видеть и вторичную перетяжку. Концевые участки хромосом имеют особую структуру и называются теломерами. Теломерные районы обладают определенной полярностью, препятствующей их соединению друг с другом при разрывах или со свободными концами хромосом. Участок хроматиды (хромосомы) от теломеры до центромеры называют плечом хромосомы. Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) мета-центрические (равноплечие); 2) субметацентрические (неравноплечие); 3) акроцентрические, у которых одно плечо очень короткое и не всегда четко различимо. Наряду с расположением центромеры, наличием вторичной перетяжки и спутника важное значение для определения отдельных хромосом имеет их длина. Для каждой хромосомы определенного набора длина ее остается относительно постоянной. Измерение хромосом необходимо для изучения их изменчивости в онтогенезе в связи с болезнями, аномалиями, нарушением воспроизводительной функции. Тонкое строение хромосом. Химический анализ структуры хромосом показал наличие в них двух основных компонентов: дезоксирибонуклеиновой кислоты (ДНК) и белков типа гистонов и протомите (в половых клетках). По мере расширения наших знаний о роли нуклеиновых кислот в передаче наследственной информации, в синтезе белков-ферментов, в явлениях развития и дифференциации организма проблема влияния ионизирующей радиации на нуклеиновые кислоты и их обмен в живой, активно метаболизирующей клетке становится одной из центральных проблем современной радиобиологии. Роль нуклеиновых кислот сводится, вероятно, к тому, чтобы удерживать белковую пленку шаблона в растянутом состоянии. Роль нуклеиновых кислот в синтезе белка изучали многие исследователи, но, несмотря на большое количество экспериментов, она остается еще не выясненной. В общем данные, доказывающие участие дезоксирибонуклеиновой кислоты в синтезе белка, немногочисленны. Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма. Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям: 1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма). 2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности. Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития). Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа.
|