Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы математической логики. Логика предиката





Средства, предоставляемые логикой высказываний, ока­зываются недостаточными для анализа многих математи­ческих рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни, тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.

Например, в рассуждении «Всякий ромб – параллелограмм; ABCD – ромб; следовательно, ABCD – параллелограмм» посылки и заключение являются элементарными высказываниями логики высказываний и с точки зрения этой логики рассматриваются как целые, неделимые, без учёта их внутренней структуры. Следовательно, алгебра логики, будучи важной частью логики, оказывается недостаточной в анализе многих рассуждений.

Поэтому возникает необхо­димость в расширении логики высказываний и построении такой логической системы, средст­вами которой можно исследовать структуру и содержание тех высказыва­ний, которые в логике высказываний рассматриваются как элементарные.

Логика предикатов, как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально – подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально – сказуемое, хотя оно может играть и роль определения).

Субъект – это то, о чем что-то утверждается в высказывании, а предикат – это то, что утверждается о субъекте. Логи­ка предикатов – это расширение логики высказываний за счет использова­ния предикатов в роли логических функций.

Например, в высказывании «7 – простое число», «7» – субъект, «простое число» – предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом».

Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х – простое число». При одних значениях х (например, х = 13, х = 17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.

Определение 1. Одноместным предикатом Р (х) на­зывается всякая функция одного переменного, в кото­рой аргумент x пробегает значения из некоторого мно­жества M, а функция при этом принимает одно из двух значений: истина или ложь.

Множество M, на котором задан предикат, называ­ется областью определения предиката.

Множество , на котором предикат принима­ет только истинные значения, называется областью ис­тинности предиката Р (х).

Так, предикат P (x) – «х – простое число» определён на множестве N, а множество для него есть множество всех простых чисел.

Определение 2. Предикат Р (х), определённый на множестве M, называется тождественно истин­ным (тождественно ложным), если .

Определение 3. Двухместным предикатом P (x,у)называется функция двух переменных х и у, определённая на множестве М = М 1× М 2 и принимающая значения из множества {1,0}.

В качестве примеров двухместных предикатов можно назвать предикаты: Q (x,у) – «х = у» предикат равенства, определённый на множестве R 2= R × R; F (x,у) – «х || у» прямая х параллельна прямой у, опредёленный на множестве прямых, лежащих на данной плоскости.

Аналогично определяется n -местный предикат.

Говорят, что предикат Р (х) является следствием предиката Q (х) , если ; и предика­ты Р (х) и Q (х) равносильны , если .

Приведём примеры к изложенному материалу.

Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истин­ности, если M= R для одноместных предикатов и M = R×R для двухместных предикатов:

1) х + 5 = 1;
2) при х = 2 выполняется равенство х 2 – 1 = 0;
3) х 2 – 2 х + 1 = 0;
4) существует такое число х, что х 3 – 2 х + 1 = 0;
5) х + 2 < З х – 4;
6) однозначное неотрицательное число х кратно 3;
7) (х + 2) – (3 х – 4);
8) х 2 + у 2 > 0.

Решение. 1) Предложение является одноместным предикатом Р (х), IP = {– 4};
2) предложение не является предикатом. Это ложное высказывание;
3) предложение является одноместным предикатом Р (х), IP = {1};
4) предложение не является предикатом. Это истинное высказывание;
5) предложение является одноместным предикатом Р (х), IP = (3; +∞);
6) предложение является одноместным предикатом Р (х), IP = {0; 3; 6; 9};
7) предложение не является предикатом;
8) предложение является двухместным предикатом Q (х,y), IQ = R×R \ {(0,0)}.

Пример 2. Изобразить на декартовой плоскости область истинности предиката .

Решение. Неравенство, составляющее исходный предикат, ограничивает часть плоскости, заключенную между ветвями параболы х = у 2, она изображена серой частью рисунка:







Дата добавления: 2015-04-16; просмотров: 897. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия