Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

П.2. Логические операции над предикатами





Предикаты, так же, как высказывания, принимают два значения и и л (1, 0), поэтому к ним применимы все операции логики высказываний.

Рассмотрим применение операций логики высказыва­ний к предикатам на примерах одноместных предикатов.

Пусть на некотором множестве М определены два предиката Р (х) и Q (х).

Определение 4. Конъюнкцией двух предикатов Р (х) и Q (х) называется новый предикат Р (х)& Q (х), который принимает значение «истина» при тех и только тех значениях , при которых каждый из предикатов Р (х) и Q (х) принимает значение «истина» и принимает значение «ложь» во всех остальных случаях. Очевидно, что областью истинности предиката Р (х)& Q (х) является общая часть областей истинности предикатов Р (х) и Q (х), т.е. пересечение .

Так, например, для предикатов Р (х): «х – четное число» и Q (х): «х кратно 3» конъюнкцией Р (х)& Q (х) является предикат «х – четное число и х кратно 3», то есть предикат «х делится на 6».

Определение 5. Дизъюнкцией двух предикатов Р (х) и Q (х) называется новый предикат , который принимает значение «ложь» при тех и только тех значе­ниях , при которых каждый из предикатов при­нимает значение «ложь» и принимает значение «исти­на» во всех остальных случаях. Ясно, что областью истинности предиката является объединение областей истинности предикатов Р (х) и Q (х), то есть объединение .

Определение 6. Отрицанием предиката Р (х) назы­вается новый предикат , который принимает значе­ние «истина» при всех значениях , при которых предикат Р (х) принимает значение «ложь», и принима­ет значение «ложь» при тех значениях , при кото­рых предикат Р (х) принимает значение «истина». Очевидно, что, .

Определение 7. Импликацией предикатов Р (х) и Q (х) называется новый предикат , который является ложным при тех и только тех значениях , при которых одновременно Р (х) принимает значение «истина», а Q (х) – значение «ложь» и принимает значе­ние «истина» во всех остальных случаях.

Так как при каждом фиксированном справедлива равносильность , то .

Ясно, что при выполнении логических операций над предикатами к ним применимы и равносильности алгеб­ры логики.

Пример 3. Пусть даны предикаты А (х,у) и В (х,у), определенные на множестве . Най­ти множество истинности предиката и изобразить ее с помощью кругов Эйлера-Венна.

Решение. Так как , то .

изображена серой частью рисунка:

Можно рассматривать и обратную задачу: «Зная об­ласть истинности предиката, полученного в результате применения логических операций к некоторым преди­катам, записать этот предикат».

Пример 4. Записать предикат, полученный в результате логических операций над предикатами Р (х), Q (х) и R (х), область истинности которого изображена серой частью рисунка:

Решение. Так как здесь , то искомый предикат имеет вид: .







Дата добавления: 2015-04-16; просмотров: 949. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия