Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перфорации





Перфорация производится пескоструйным аппаратом, спускаемым на насосно-компрессорных трубах. Аппарат АП-6М конструкции ВНИИ имеет шесть боковых отверстий, в которые ввинчиваются шесть насадок для одновременного создания шести перфорационных каналов. Насадки в стальной оправе изготавливаются из твердых сплавов, устойчивых против износа водопесчаной смесью, трех стандартных диаметров 3; 4, 5 и 6 мм.

 

Рис.3. Аппарат для пескоструйной перфорации АП-6М:

 

1 – корпус. 2 – шар опрессовочного клапана; 3 – узел насадки; 4 – заглушка; 5 – шар клапана; 6 – хвостовик; 7 – центратор

 

 

Насадки диаметром 3 мм применяются для вырезки прихваченных труб в обсаженной скважине, когда глубина резания должна быть минимальной. Насадки диаметром 4,5 мм используются для перфорации обсадных колонн, а также при других работах, когда возможный расход жидкости ограничен. Насадки диаметром 6 мм применяют для получения максимальной глубины каналов и при ограничении процесса по давлению.

Медленно вращая пескоструйный аппарат или вертикально его перемещая, можно получить горизонтальные или вертикальные надрезы и каналы. В этом случае сопротивление обратному потоку жидкости уменьшается и каналы получаются примерно в 2,5 раза глубже. В пескоструйном аппарате предусмотрены два шаровых клапана, сбрасываемых с поверхности. Диаметр нижнего клапана меньше, чем седло верхнего клапана, поэтому нижний шар свободно проходит через седло верхнего клапана.

После спуска аппарата, обвязки устья скважины и присоединения к нему насосных агрегатов система спрессовывается давлением, превышающим рабочее в 1,5 раза. Перед опрессовкой в НКТ сбрасывается шар диаметром 50 мм от верхнего клапана для герметизации системы. После опрессовки обратной промывкой, т. е. закачкой жидкости в кольцевое пространство, верхний шар выносится на поверхность и извлекается. Затем в НКТ сбрасывается малый – нижний шар, и при его посадке па седло нагнетаемая жидкость получает выход только через посадки. После этого проводится перфорация закачкой в НКТ водопесчаной смеси. Концентрация песка в жидкости обычно составляет 80 – 100 кг/м3. При пескоструйной перфорации НКТ испытывают большие напряжения.

Усилия в муфтовом соединении НКТ в верхнем – наиболее опасном сечении от веса колонны НКТ и давления жидкости не должны превосходить усилия, страгивающего резьбовое соединение муфт, Рстр.

 

Общие гидравлические потери при гидропескоструйной перфорации складываются из следующих: P1 – потерь давления на трение в НКТ при движении песчано-жидкостной смеси от устья до пескоструйного аппарата; P – потерь давления в насадках, определяемых по графикам или расчетным путем; P2 – потерь на трение восходящего потока жидкости в затрубном кольцевом пространстве; P3 – противодавления на устье скважины в затрубном пространстве при работе по замкнутой системе.

 

Так как гидростатические давления жидкости в НКТ и кольцевом пространстве уравновешены, то давление нагнетания на устье Pу будет равно сумме всех потерь:

 

(4)

Величина P1 определяется по формулам трубной гидравлики

 

(5)

 

где коэффициент трения определяется как обычно, через число Re, но увеличивается на 15 – 20% вследствие присутствия песка в жидкости; L – длина НКТ; dв – внутренний диаметр НКТ; vт – линейная скорость потока в НКТ, vт = 4Q/(?dв2);? – плотность песчано-жидкостной смеси.

 

Величина?P определяется по графикам. Величина Р2 также определяется по формуле трубной гидравлики для движения жидкости по кольцевому пространству

 

(6)

 

где Dв – внутренний диаметр обсадной колонны, dн – наружный диаметр НКТ.

 

vк = 4Q/(?(Dв2 - dн2)) – линейная скорость восходящего потока жидкости в кольцевом пространстве, которая не должна быть меньше 0,5 м/с для полного выноса песка и предупреждения прихвата труб.

 

Во ВНИИ были определены суммарные потери на трение (Р1 + Р2) в реальных скважинах при прокачке водопесчаных смесей. Суммарный расход жидкости равен произведению числа действующих насадок n на расход жидкости через одну насадку qж:

 

(7)

 

Например, при шести насадках и расходе через одну насадку 4 л/с общий расход составит 24 л/с, а потери на трение в скважине глубиной 1700 м при 168-мм колонне и 73-мм НКТ составит около 8,2 МПа (см. рис. 4.11). При расходе через 4,5-мм насадку, равном 4 л/с, перепад давления в насадках P составит около 40,0 МПа (см. рис. 4.9).

 

При выборе перепада давления в насадках следует иметь в виду, что нижний предел допустимых перепадов должен обеспечить эффективное разрушение колонны, цементного камня и породы, а поэтому не должен быть меньше 12,0 – 14,0 МПа для 6-мм насадок и 18,0 – 20,0 МПа для насадок 4,5 и 3 мм. При очень большой прочности горных пород (20,0 – 30,0 МПа) нижние пределы, как показывает опыт, целесообразно увеличить до 18,0 – 20,0 МПа для 6-мм насадки и 25,0 – 30,0 МПа для 4,5-и 3-мм насадки.

 

 

Рис. 8. Потери давления в трубах и межтрубном пространстве при прокачке водопесчаной смеси на каждые 100 м длины:

1 - для 140-мм колонны и 73-мм НКТ; 2 - для 140-мм колонны и 89-мм НКТ;

3 - для 168-мм колонны и 73-мм НКТ; 4 - для 168-мм колонны и 89-мм НКТ

 

Для точной установки перфоратора против нужного интервала применяют в колонне НКТ муфту-репер. Это короткий (0,5 – 0,7 м) патрубок с утолщенными стенками (15 – 20 мм), который устанавливают выше перфоратора на расстоянии одной или двух труб. После спуска колонны НКТ в нее опускают на кабеле малогабаритный геофизический индикатор, реагирующий на утолщение металла. Получая таким образом отметку муфты-репера, определяют положение перфоратора по отношению к разрезу продуктивного пласта. Однако при этом необходимо учитывать дополнительное удлинение НКТ при создании в них давления. Это удлинение, пропорциональное нагрузке, определяется формулой Гука

(9)

 

где Ру – давление на устье скважины; F – площадь сечения НКТ; L – длина НКТ; Е – модуль Юнга, Па (обычно 20 •104 МПа); f – площадь сечения металла труб, м2; z – коэффициент, учитывающий трение труб о стенки обсадной колонны (принимают 1,5 – 2).

 

При гидропескоструйной перфорации применяется то же оборудование, как и при гидроразрыве пласта. Устье скважины оборудуется стандартной арматурой типа 1АУ-700, рассчитанной на рабочее давление 70,0 МПа. Для прокачки песчано-жидкостной смеси используются насосные агрегаты, смонтированные на платформе тяжелых грузовых автомобилей 2АН-500 или 4АН-700, развивающие максимальные давления соответственно 50 и 70 МПа. При меньших давлениях используют цементировочные агрегаты, предназначенные для цементировочных работ при бурении. Число агрегатов n определяется как частное от деления общей необходимой гидравлической мощности на гидравлическую мощность одного агрегата, причем для запаса берется еще один насосный агрегат,

(10)

 

где Q – расчетный суммарный расход жидкости; Pу – давление на устье скважины; qа – подача одного агрегата на расчетном режиме; Ра – давление, развиваемое агрегатом. Агрегат 4АН-700 снабжен дизелем мощностью 588 кВт при 2000 об/мин трехплунжерным насосом 4Р-700 с диаметрами плунжеров 100 или 120 мм. Ход плунжера 200 мм. Коробка передачи имеет четыре скорости. Характеристика агрегата приведена в табл. 4. 1. Песчано-жидкостная смесь готовится в пескосмесительном агрегате (2ПА; ЗПА и др.), который представляет собой бункер для песка емкостью 10 м3 с коническим дном. В нижней части бункера вдоль продольной оси установлен шнек. Скорость вращения шнека ступенчато изменяется от 13,5 до 267 об/мин. В соответствии с этим подача песка изменяется от 3,4 до 676 кг/мин. Кроме того, агрегат снабжен насосом 4НП (насос песковый) низкого давления для перекачки песчано-жидкостной смеси. Бункер со всем оборудованием смонтирован на шасси тяжелого автомобиля.

 

Специальные рабочие жидкости завозят на скважину автоцистернами или приготавливают в небольших (10 – 15 м3) емкостях, установленных на салазках. В обвязку поверхностного оборудования монтируют фильтры высокого давления – шламоуловители, предупреждающие закупорку насадок крупными частицами породы.

Песчано-жидкостная смесь готовится тремя способами:

- с повторным использованием песка и жидкости (закольцованная схема);

- со сбросом отработанного песка с повторным использованием жидкости;

- со сбросом жидкости и песка.

 

Наиболее экономична закольцованная схема, так как при этом расходы жидкости и песка минимальные. Кроме того, при использовании специальных жидкостей (нефть, раствор кислоты, глинистый раствор и др.) не загрязняется территория. Для сравнения можно привести фактические данные, полученные на Узеньском месторождении. При работе по кольцевой схеме было израсходовано 20 м3 воды и 4,1 т песка, а при работе со сбросом воды и песка потребовалось 275 м3 воды и 14 т песка.

 

Схема (рис. 4.12) предусматривает также необходимые операции по промывке скважины как через колонну НКТ, так и через кольцевое пространство. Обязательным элементом схемы обвязки является установка обратных клапанов на выкидных линиях агрегатов и лубрикатора или байпаса для ввода шаров-клапанов пескоструйного аппарата.

 

Рис.11. Схема обвязки поверхностного оборудования при работе по замкнутому циклу:

1 - АН-700; 2 - ЦА-320; 3 - шламоуловитель; 4 - пескосмеситель; 5 - емкость;

6 - скважина; 7 - обратный клапан; 8 - открытые краны; 9 - закрытые краны

 

В качестве рабочей используют различные жидкости, исходя из условия ее относительной дешевизны, предотвращения ухудшения коллекторских свойств пласта и открытого фонтанирования. Состав жидкости устанавливают в лабораториях. Для целей ГПП используют воду, 5 – 6%-ный раствор ингибированной соляной кислоты, дегазированную нефть, пластовую сточную или соленую воду с ПАВами, промывочный раствор. В случае если плотность рабочей жидкости не обеспечивает глушение скважины, добавляют утяжелители: мел, бентонит и др.

 

Объем рабочей жидкости принимается равным 1,3 – 1,5 объема скважины при работе по замкнутому циклу. При работе со сбросом объем жидкости определяют из простого соотношения

 

(12)

 

где qн – -принятый расход жидкости через одну насадку; n – число одновременно действующих насадок; t – продолжительность перфорации одного интервала (15 – 20 мин);.N – число перфорационных интервалов.

 

Количество песка принимается из расчета 50 – 100 кг песка на 1 м3 жидкости.

 

Процесс ГПП связан с работой насосных агрегатов, развивающих высокие давления, и в некоторых случаях с применением горячих жидкостей. Поэтому проведение этих работ регламентируется особыми правилами по охране труда и пожарной безопасности, несоблюдение которых может привести к очень тяжелым последствиям. Перед началом работ обязательна опрессовка всех коммуникаций на давление, в 1,5 раза превышающее рабочее. ГПП осуществляют, начиная с нижних интервалов.

 

Пескоструйная перфорация в отличие от кумулятивной или пулевой перфорации позволяет получить каналы с чистой поверхностью и сохранить проницаемость на обнаженной поверхности пласта. Громоздкость операции, задалживание мощных технических средств и большого числа обслуживающего персонала определяют довольно высокую стоимость этого способа перфорации и сдерживают ее широкое применение по сравнению с кумулятивной перфорацией.

 







Дата добавления: 2015-04-16; просмотров: 771. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия