Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двойственные задачи линейного программирования





Экономический факультет

Важную роль в линейном программировании имеет понятиедвойственности. Рассмотрим две задачи линейного программирования:

max{F(x) = CT x| Ax≤B, xi≥0, i =1,n} (1)

и

min{F(y) = BT y| AT y≥C, yj ≥0, j = 1,m}. (2)

Задачу (1) называют прямой, а связанную с ней задачу (2) – двойственной. Вместе они образуют симметрическую пару двойственных задач. Число переменных двойственной задачи равно количеству ограничений прямой. Кроме того, при переходе от прямой задачи к двойственной вектора B и C меняют местами, матрица A коэффициентов системы ограничений прямой задачи транспонируется, а знак неравенств в ограничениях меняют на противоположный. Смысл экстремума F(x) противоположен смыслу экстремума F(y). Связь между задачами (1) и (2) взаимна, т.е. если прямой считать задачу (2), то в качестве двойственной ей будет соответствовать задача (1). Возможность перехода от прямой задачи к двойственной (и наоборот) устанавливается теоремой двойственности:если одна из задач (1) или (2) имеет оптимальное решение, то и другая также имеет оптимальное решение, причем оптимальные значения функции цели прямой и двойственной задач совпадают, т.е. max F(x) = min F(y).

Если среди ограничений прямой задачи имеются равенства или на некоторые переменные не наложено условие неотрицательности, то построив двойственную ей задачу, получим пару несимметричных двойственных задач:

При этом выполняются следующие правила:

1. Если на переменную xi прямой задачи наложено условие неотрицательности, то i-е условие системы ограничений двойственной задачи является неравенством и наоборот.

2. Если на переменную xi прямой задачи не наложено условие неотрицательности, то i-е ограничение двойственной задачи записывается в виде строгого равенства.

3. Если в прямой задаче имеются ограничения равенства, то на соответствующие переменные двойственной задачи не накладывается условие неотрицательности.

Линейное программирование находит широкое применение при решении многих практических задач организационно-экономического управления. Цель, как правило, заключается в том, чтобы максимизировать прибыль либо минимизировать расходы.

Рассмотрим задачу рационального использования ресурсов.

Пусть предприятие располагает ресурсами b1,b2,...,bm, которые могут использоваться для выпуска n видов продукции. Известны нормы потребления j-го ресурса на производство единицы i-й продукции – aij, а также прибыль от реализации единицы i-го вида продукции ci (i = 1, n; j = 1,m). Найти объем производства продукции каждого вида x*i, максимизирующий суммарную прибыль предприятия F(x) = ∑cixi, при этом расход ресурсов не должен превышать их наличия. Математическая модель задачи имеет вид

max{F(x)=∑cixi|∑ajixi≤bj, j=1,m; xi≥0, i=1,n} (3)

Метод искусственного базиса используется для нахождения допустимого базисного решения задачи линейного программирования, когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑cixi|∑ajixi=bj, j=1,m; xi≥0}.

Под чувствительностью модели понимается зависимость оптимального решения от изменения параметров исходной задачи. Выполняя анализ модели на чувствительность, можно выяснить:

а) насколько можно увеличить запас некоторого ресурса, чтобы улучшить оптимальное значение F;

б) насколько можно сократить запас некоторого ресурса, чтобы сохранить при этом оптимальное значение F;

в) увеличение объёма какого из ресурсов наиболее выгодно;

г) какому из ресурсов отдать предпочтение при вложении дополнительных средств;

д) в каких пределах допустимо изменять коэффициенты целевой функции, чтобы не произошло изменение оптимального решения.

Ограничения, проходящие через точку оптимума, называются активными, или связывающими. Ресурсы, с которыми ассоциируются эти ограничения, относятся к разряду дефицитных. Остальные ресурсы недефицитны, а соответствующие им ограничения – неактивные или несвязывающие. Сокращение объема дефицитного ресурса никогда не улучшает значения целевой функции. Анализ на чувствительность придает модели динамичность, свойственную реальным процессам.

Сформулируем задачу, двойственную к рассматриваемой задаче рационального использования ресурсов. Пусть некоторая организация может закупить все ресурсы bj, которыми располагает предприятие. Необходимо определить оптимальные цены y*j (j = 1,m) на единицу этих ресурсов при условии, что покупатель стремиться минимизировать общую оценку ресурсов. При этом общая ценность ресурсов должна быть не меньше прибыли, которую может получить предприятие при организации собственного производства. Математическая модель задачи имеет вид

min{F(y)=∑bjyj|∑aijyj≥ci, i=1,n; yj0, j=1,m} (4)

Пока прибыль предприятия (задача 3) меньше общей ценности ресурсов (задача 4), решение обеих задач будет неоптимальным. Оптимум достигается в случае, когда прибыль становится равной общей ценности ресурсов, т.е. max F(x) = min F(y).

Пример 1. Построить двойственную задачу к следующей задаче, заданной в общей форме:

F(x) = 3x1 + 2x2 (min);

x1 + x2 ≤ 5

2x1 - x2 ≤ 3

x1 + 0.5x2 ≥2

x1,2 ≥ 0

Приведем условие к стандартной форме (2). Так как требуется найти минимум целевой функции, то неравенства в системе ограничений должны быть вида ≥. Первое и второе неравенства умножим на (-1), тогда

Двойственная задача будет иметь 3 переменные, так как прямая содержит три ограничения. В соответствии с указанными выше правилами запишем двойственную задачу в виде

тогда условие ATy≤C примет следующий вид:

- y1 - 2y2 + y3 ≤ 3

- y1 + y2 + 0.5y3 ≤ 2

y1≥0, y2≥0, y3≥0.

Составим начальные симплекс-таблицы для прямой и двойственной задач (табл. 1 и 2).

 

Таблица 1

базисные переменные Свободные члены Небазисные переменные
x1 x2
x3      
x4     -1
x5 -2 -1 0.5
F      

Таблица 2

базисные переменные Свободные члены Небазисные переменные
y1 y2 y3
y4   -1 -2  
y5   -1   0.5
F       -2

В общем виде при минимизации F(x) в прямой задаче начальные симплекс-таблицы для прямой и двойственной задач можно представить в виде табл. 3 и 4.

Если в прямой задаче находится максимальное значение F(x), то начальные симплекс-таблицы прямой и двойственной задач можно представить в виде табл. 5 и 6.

 

 

Список используемой литературы:

  1. Интернет-ресурс (studopedia.net)
  2. Учебное пособие “Компьютерное моделирование” Боев В.Д., Сыпченко Р.П., Издательство Интернет-Университет Информационных Технологий, 2010 г.






Дата добавления: 2015-03-11; просмотров: 472. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия