Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение: Плоскость, проходящая через касательную и главную нормаль к кривой в точке А называется соприкасающейся плоскостью





 

Определение: Нормаль к кривой, перпендикулярная к соприкасающейся плоскости, называется бинормалью. Ее единичный вектор- .

Величина называется кручением кривой.

 

Ниже рассмотрим несколько примеров исследования методами дифференциального исчисления различных типов функций.

 

 

Пример: Методами дифференциального исчисления исследовать функцию и построить ее график.

 

1. Областью определения данной функции являются все действительные числа (-¥; ¥).

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

 

5. Возрастание и убывание функции, точки экстремума.

. Видно, что у¢< 0 при любом х ¹ 0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

 

y¢¢ = 0 при х =0 и y¢¢ = ¥ при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y¢¢(1-h) < 0; y¢¢(1+h) >0; y¢¢(-h) > 0; y¢¢(h) < 0 для любого h > 0.

 

6. Построим график функции.

 

 

Пример: Исследовать функцию и построить ее график.

 

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

 

5. Находим точки экстремума функции.

; y¢ = 0 при х = 2, у¢ = ¥ при х = 0.

y¢ > 0 при х Î (-¥, 0) – функция возрастает,

y¢ < 0 при х Î (0, 2) – функция убывает,

у¢ > 0 при х Î (2, ¥) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

> 0 при любом х ¹ 0, следовательно, функция вогнутая на всей области определения.

 

6. Построим график функции.

 

 

 

Пример: Исследовать функцию и построить ее график.

 

1. Областью определения данной функции является промежуток х Î (-¥, ¥).

2. В смысле четности и нечетности функция является функцией общего вида.

3. Точки пересечения с осями координат: с осью Оу: x = 0, y = 0;

с осью Ох: y = 0, x = 0, x = 1.

4. Асимптоты кривой.

Вертикальных асимптот нет.

Попробуем найти наклонные асимптоты в виде y = kx + b.

- наклонных асимптот не существует.

 

5. Находим точки экстремума.

Для нахождения критических точек следует решить уравнение 4х3 – 9х2 +6х –1 = 0.

Для этого разложим данный многочлен третьей степени на множители.

Подбором можно определить, что одним из корней этого уравнения является число

х = 1. Тогда:

4x3 – 9x2 + 6x – 1 x - 1

` 4x3 – 4x2 4x2 – 5x + 1

- 5x2 + 6x

` - 5x2 + 5x

x - 1

` x - 1

 

Тогда можно записать (х – 1)(4х2 – 5х + 1) = 0. Окончательно получаем две критические точки: x = 1 и x = ¼.

 

Примечание. Операции деления многочленов можно было избежать, если при нахождении производной воспользоваться формулой производной произведения:

 

Найдем вторую производную функции: 12x2 – 18x + 6. Приравнивая к нулю, находим:

x = 1, x = ½.

 

Систематизируем полученную информацию в таблице:

 

 

  (-¥; ¼) 1/4 (¼; ½) 1/2 (½; 1)   (1; ¥)
f¢¢(x) + + +   -   +
f¢(x) -   + + +   +
f(x) убывает вып.вниз min возрастает вып.вниз перегиб возрастает вып.вверх перегиб возрастает вып. вниз

 

 

6. Построим график функции.

 

 

 







Дата добавления: 2015-04-16; просмотров: 456. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия