Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткие теоретические сведения. С позиции классической электронной теории металлы рассмат­риваются как система, состоящая из положительных ионов





 

С позиции классической электронной теории металлы рассмат­риваются как система, состоящая из положительных ионов, обра­зующих узлы кристаллической решетки, и свободных (коллективи­зированных) электронов – электронов проводимости, заполняющих остальное пространство решетки.

Электрический ток в металлических проводниках обусловлен упорядоченным движением – дрейфом электронов проводи­мости под действием внешнего электрического поля.

Количественно это явление описывается законом Ома. Согласно закону Ома в дифференциальной форме плотность тока пропорцио­нальна напряженности поля:

 

j = g Е,

 

где j — плотность электрического тока, А/м2; Е — напряженность поля, В/м; g – коэффициент пропорциональности, представляющий удельную электропроводность, См/м.

На основании классической электронной теории удельная элек­тропроводность у металлов определяется выражением:

 

, (6.1)

 

где е — заряд электрона, Кл = А с; п – концентрация электронов про­водимости, м–3; а — подвижность электронов, обусловленная действи­ем электрического поля, м2/(В с), (а = v cpp /E= eE t /E 2 m = e l / 2 mv);l– средняя длина свободного пробега электрона между двумя столк­новениями с решеткой в ускоряющем поле напряженностью Е,м; т –масса электрона, кг; v – средняя скорость теплового движения электронов в металле, м/с; t – время между двумя столкновениями, с; v cpp – среднее значение дрейфовой скорости, м/с.

У всех металлов величину средней скорости v теплового дви­жения можно считать постоянной. Концентрация п электронов проводимости, как и скорость v, мало зависит от природы метал­ла. Поэтому удельная электропроводность g металлических про­водников зависит в основном от средней длины свободного про­бега электрона l, величина которой существенно влияет на подвижность а электронов: чем меньше l, тем меньше а. Величи­на l, в свою очередь зависит от степени деформации кристаллической решетки металлического проводника. У идеального металли­ческого проводника при температуре, равной 0 К, электроны проводимости не будут сталкиваться с узлами кристаллической решетки, поэтому длина свободного пробега электрона lи, следо­вательно, электропроводность g должны быть бесконечно больши­ми, а удельное сопротивление r равно нулю.

Зависимость удельной проводимости ρ от концентрации и свободных зарядов легко получить, используя закон Ома для участка цепи:

 

,

 

где I – сила тока протекающего по участку цепи; R – сопротивление участка цепи; U – напряжение на концах участка цепи.

Сопротивление проводника простейшим способом определяют, используя закон Ома для участка электрической цепи. Для этого нужно измерить вольтметром разность потенциалов U на концах проводника и амперметром силу тока I в проводнике и поделить одно на другое. Этот метод измерений (по току и напряжению) называют техническим. Однако при таком способе измерения вносятся систематические ошибки, величина которых зависит от сопротивлений измерительных приборов и величины измеряемых сопротивлений.

Действительно, при включении приборов по схеме на рис. 6.1 показания вольтметра соответствуют напряжению на сопротивлении (UV = U), но показания амперметра соответствуют не току через сопротивление, а сумме токов через проводник и вольтметр:

 

IA = IV + I. (6.2)

 

Рис. 6.1. Схема электрическая принципиальная измерения сопротивления вольтметром и амперметром

 

При включении по схеме на рис. 6.2 показания амперметра соответствуют току через сопротивление (IA = I), но вольтметр показывает не напряжение на сопротивлении, а суммарное напряжение на сопротивлении и амперметре:

 

UV= IR + IRA (6.3)

 

Рис. 6.2. Схема электрическая принципиальная измерения сопротивления вольтметром и амперметром

 

Из выражений (6.2) и (6.3) следует, что для уменьшения погрешностей, вносимых при подключении приборов, сопротивление амперметра должно быть малым, а сопротивление вольтметра – большим. Данный метод лежит в основе работы омметров. Прибор прикладывает известную разность потенциалов к измеряемому сопротивлению и измеряет протекающий ток.

Мостовые схемы измерения сопротивлений позволяют избавиться от ошибок, вносимых электроизмерительными приборами, так как здесь эти приборы используются не для измерения силы тока и напряжения, идущих в дальнейшие расчеты, а только в качестве чувствительных индикаторов, работающих либо в режиме постоянного показания, либо, чаще, в режиме отсутствия тока (нуль-метод).

Схема моста Уитстона составлена из сопротивлений Rx, R 1, R 2, R 3, образующих плечи моста (рис. 6.3). В одну из диагоналей мостовой схемы CD включается чувствительный измеритель тока – миллиамперметр. К другой диагонали АВ подключается источник питания с сопротивлением R д. В плечи моста АС и включаются известные сопротивления R 2 и R 3. В плечо AD включается измеряемое сопротивление Rx, а в плечо СВ – магазин сопротивлений. Магазин сопротивлений представляет собой набор достаточно точных переменных сопротивлений. Процесс измерения по этой схеме заключается в подборе такого сопротивления магазина, при котором миллиамперметр в диагонали СD показывает отсутствие тока.

 

Рис. 6.3. Схема моста Уитстона

 

При произвольном соотношении сопротивлений через все плечи моста и через гальванометр идут токи. Изменяя сопротивление магазина, добиваются такого состояния, при котором потенциалы точек С и D будут одинаковыми, и ток через миллиамперметр станет равным нулю. Это состояние схемы называется равновесием моста.

В состоянии равновесия разность потенциалов между точками А и С равна разности потенциалов между точками А и D
φ C φ B = φ D φ B. В соответствии с законом Ома для пассивного участка электрической цепи разность потенциалов на концах участка равна падению напряжения на участке – произведению силы тока на сопротивление этого участка цепи: φ1 – φ2 = IR. Приравнивая падения напряжения на сопротивлениях Rx и R 3, R 1 и R 2, получим следующие выражения:

 

I 3 R 3 = IxRx (6.4)

 

I 1 R 1= I 2 R 2 (6.5)

 

Эти равенства справедливы только тогда, когда мост находится в состоянии равновесия. Так как ток в диагонали СD при этом равен нулю, то ток I 1 протекающий по сопротивлению R 1, равен току I 3, протекающему по сопротивлению R 3, а ток Ix, протекающий по сопротивлению Rx, равен току I 2, протекающему по магазину сопротивлений R 2. Разделив уравнение (6.4) на уравнение (6.5), получим условие равновесия моста Уитстона:

 

.

 

Из него следует, что если установить ток в гальванометре равным нулю, то неизвестное сопротивление Rx определяется по остальным трем сопротивлениям:

 

 

Активное сопротивление зависит от формы и размеров проводника:

 

 

Для однородного проводника с поперечным сечением S и длиной l:

 

(6.6)

 

6.4. Используемое оборудование

 

Модуль «Измеритель RLC», «Модуль питания», образцы ис­следуемых проводников, соединительные проводники.

 







Дата добавления: 2015-04-16; просмотров: 483. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия