Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример № 1. Систему линейных алгебраических уравнений решить тремя способами:





Систему линейных алгебраических уравнений решить тремя способами:

1. методом Гаусса;

2. по формулам Крамера;

3. матричным способом.

Решение:

1. Метод Гаусса – метод последовательного исключения неизвестных (решим им в матричном виде):

Вернёмся опять к системе:

 

2. Найдём её решение с помощью формул Крамера.

главный определитель отличен от нуля, следовательно, существует единственное решение системы.

 

3. Матричный метод:

пусть .

Тогда система линейных уравнений примет вид матричного уравнения: AX=B. Умножим слева обе части матричного уравнения на А-1 –обратную матрицу для А: А-1AX= А-1B, где А-1A=Е – единичная матрица, то есть:

ЕX= А - 1 B, где ЕX=Х. Итак: X= А-1B. Ищем А-1 – обратную матрицу для А (если она существует) по формуле:

следовательно, обратная матрица существует.

Итак, обратная матрица имеет вид:

Ищем решение по формуле: X= А-1B.

Итак, все три метода привели к единому ответу, что: .

Ответ: (-106/15; 161/15; 46/15)

 

 

Вопросы к экзамену (зачету).

 

1.Правило вычисления определителей второго и третьего порядков.

Вычислить: ;

2. Свойства определителей.

3. Определение минора.

4. Определение алгебраического дополнения.

5. Определение матрицы, виды матриц.

6. Действия с матрицами.

7.Алгоритм нахождения обратной матрицы. Найти матрицу обратную для матрицы

8.Решение систем линейных уравнений тремя способами:

1) методом Крамера

2)матричным способом

3)методом Гаусса

Решить систему:

9. Определение вектора, координат вектора.

10. Линейные операции с векторами.

11.Скалярное произведение векторов (результат, определение, операция в координатной форме, геометрический смысл).

12.Векторное произведение векторов (результат, определение, операция в координатной форме, геометрический смысл).

13.Смешанное произведение векторов (результат, определение, операция в координатной форме, геометрический смысл).

14. Уравнения прямой на плоскости.

15. Уравнения плоскости.

16. Уравнения прямой в пространстве.

17. Взаимное расположение прямых и плоскостей.

.







Дата добавления: 2015-03-11; просмотров: 1609. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия