Студопедия — БИЛЕТ № 20. Звезды образуются в межзвездных газопылевых облаках и туманностях
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

БИЛЕТ № 20. Звезды образуются в межзвездных газопылевых облаках и туманностях






  1. Эволюция звезд, ее этапы и конечные стадии.

Звезды образуются в межзвездных газопылевых облаках и туманностях. Основная сила, «формирующая» звезды – гравитация. При определенных условиях очень разреженная атмосфера (межзвездный газ) начинает сжиматься под действием сил гравитации. Облако газа уплотняется в центре, где удерживается выделяемое при сжатии тепло – возникает протозвезда, излучающая в инфракрасном диапазоне. Протозвезда разогревается под действием падающего на нее вещества, и начинаются реакции ядерного синтеза с выделением энергии. В таком состоянии это уже переменная звезда типа Т Тельца. Остатки облака рассеиваются. Далее гравитационные силы стягивают атомы водорода к центру, где они сливаются, образуя гелий и выделяя энергию. Растущее давление в центре препятствует дальнейшему сжатию. Это – стабильная фаза эволюции. Эта звезда является звездой Главной последовательности. Светимость звезды растет по мере уплотнения и разогрева ее ядра. Время, в течение которого звезда принадлежит Главной последовательности, зависит от ее массы. У Солнца это приблизительно 10 миллиардов лет, однако звезды гораздо более массивные, чем Солнце существуют в стационарном режиме лишь несколько миллионов лет. После того как звезда израсходует водород, содержащийся в центральной ее части, внутри звезды происходят крупные перемены. Водород начинает перегорать не в центре, а в оболочке, которая увеличивается в размере, раз­бухает. В результате размер самой звез­ды резко возрастает, а температура ее поверхности падает. Именно этот про­цесс и порождает красных гигантов и сверхгигантов. Конечные стадии эволюции звезды также определяются массой звезды. Если эта масса не превосходит сол­нечную более чем в 1,4 раза, звезда ста­билизируется, становясь белым карли­ком. Катастрофического сжатия не про­исходит благодаря основному свойст­ву электронов. Существует такая сте­пень сжатия, при которой они начина­ют отталкиваться, хотя никакого источ­ника тепловой энергии уже нет. Это происходит лишь тогда, когда электроны и атомные ядра сжаты не­вероятно сильно, образуя чрезвычайно плотную материю. Белый карлик с массой Солнца по объему приблизительно равен Земле. Белый карлик постепенно остывает, в конечном итоге превращаясь в темный шар радиоактивного пепла. По оценкам астрономов, не менее десятой части всех звезд Галактики – белые карлики.

Если масса сжимающейся звезды пре­восходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на этом не остановит­ся. Гравитационные силы в этом слу­чае столь велики, что электроны вдав­ливаются внутрь атомных ядер. В ре­зультате протоны превращаются в ней­троны, способные при­легать друг к другу без всяких проме­жутков. Плотность нейтронных звезд превосходит даже плотность белых кар­ликов; но если масса материала не пре­восходит 3 солнечных масс, нейтроны, как и электроны, способны сами пред­отвратить дальнейшее сжатие. Типич­ная нейтронная звезда имеет в попе­речнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещест­ва весит около миллиарда тонн. Помимо громадной плотности, нейтронные звезды облада­ют еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнит­ное поле.

Если масса звезды превышает 3 массы Солнца, то конечной стадией ее жизненного цикла является, вероятно, черная дыра. Если масса звезды, а, следовательно, и сила тяготе­ния так велики, то звезда подвергается катастрофиче­скому гравитационному сжатию, которому не могут противостоять никакие стабилизирующие си­лы. Плотность вещества в ходе этого процесса стремится к бесконечности, а радиус объек­та — к нулю. Согласно теории относительности Эйн­штейна, в центре черной дыры возникает сингулярность прост­ранства-времени. Гравитационное поле на поверхности сжимающейся звезды растет, поэтому излучению и час­тицам становится все труднее ее покинуть. В конце концов, такая звезда оказывается под горизонтом собы­тий, который можно наглядно представить как односто­роннюю мембрану, пропускающую вещество и излучение только внутрь и не выпускающую ничего наружу. Коллапсирующая звезда превращается в черную дыру, и ее можно обнаружить только по резкому изменению свойств прост­ранства и времени около нее. Радиус горизонта собы­тий называется радиусом Шварцшильда.

Звезды с массой меньше 1,4 солнечной в конце жизненного цикла медленно сбрасывают верхнюю оболочку, которую называют планетарной туманностью. Более массивные звезды, которые превращаются в нейтронную звезду или черную дыру, сначала взрываются как сверхновые, их блеск за короткое время увеличивается на 20 величин и более, высвобождается энергии больше, чем излучает Солнце за 10 миллиардов лет, а остатки взорвавшейся звезды разлетаются со скоростью 20 000 км в секунду.

  1. Наблюдение и зарисовка положений солнечных пятен с помощью телескопа (на экране).

 







Дата добавления: 2015-04-16; просмотров: 739. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия