Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗАДАНИЕ 1





ЗАДАНИЕ 1

Решить задачу линейного программирования графическим способом и с помощью инструмента «Поиск решения» табличного процессора MS Excel.

Решение:

Систему линейных уравнений вида:

 

принято называть системой n линейных алгебраических уравнений (СЛАУ) с и неизвестными. При этом произвольные числа аij (i=1, 2, …, n; j=1, 2, …, n) называются коэффициентами системы (коэффициентами при неизвестных), а числа bi (i=1, 2,..., n) - свободными членами. Такая форма записи алгебраической линейной системы называется нормальной.

Решением называется совокупность чисел xi (i=1, 2, …, n), при подстановке которых в систему каждое из ее уравнений обращается в тождество.

Для решения:

 

(3.2)

представим эту систему в матричном виде: AX = B, где А – матрица коэффициентов системы уравнений, Х – вектор неизвестных и В – вектор правых частей.

 

В этом случае неизвестные x1,x2, x3 и x4 вычисляются по формуле:

,i=1, …, 4

Где ∆ - определитель матрицы A, ∆i - определитель матрицы, получаемой из матрицы А путем замены i-го столбца вектором b.

Методом Крамера (методом вычисления определителей).

Решение можно найти по формулам Крамера:

 

где det А = |А| - определитель матрицы системы (главный определитель), det Аi = |Ai|

(i=1, 2,..., n) - определители матрице, (вспомогательные определители), которые получаются из А заменой i-го столбца на столбец свободных членов В. Линейная алгебраическая система несовместна (не имеет решений), если det А = 0.

 

Рисунок.1 – Формирование вспомогательных матриц

 

Для Реализации этого метода в MS Excel:

1. введём матрицу А и вектор b на рабочий лист.

2. Сформируем четыре вспомогательные матрицы, заменяя последовательно столбцы матрицы A на столбец вектора b (рисунок 1).

3. Чтобы вычислить определитель матрицы A. Установим курсор в ячейку H8 и обратимся к мастеру функций. В категории Математические выберем функцию МОПРЕД, предназначенную для вычисления определителя матрицы, и перейдём ко второму шагу мастера функций. Диалоговое окно, появляющееся на втором шаге содержит поле ввода Массив. В этом поле указывают диапазон матрицы, определитель которой вычисляют. В нашем случае это ячейки B2:E5. (рисунок 2)

 

Рисунок 2 – Мастер функций

 

4. Для вычисления вспомогательных определителей введем формулы:

H9=МОПРЕД(B7:E10),

H10=МОПРЕД(B12:E15),

H11=МОПРЕД(B17:E20),

H12=МОПРЕД(B22:E25).

В результате в ячейке H8 хранится главный определитель, а в ячейках H9:H12 – вспомогательные.

5. Воспользуемся формулами Крамера и разделим последовательно вспомогательные определители на главный. В ячейку J9 введём формулу =H11/$H$8. Затем скопируем её содержимое в ячейки J10, J11 и J12.

Сделаем проверку решения, для этого подставим в нашу систему полученные значения:

6. В ячейку L9 вводим формулу =B2*$J$9+C2*$J$10+D2*$J$11+E2*$J$12. Затем копируем её содержимое в ячейки L10, L11 и L12, получившиеся в результате вычислений ответы совпали с ответами в исходном примере - Система решена верно.

 

Рисунок 3 – Результаты вычислений

 

Матричный способ решения СЛАУ.

Этот способ достаточно прост. Обе части матричного равенства АХ = В умножим слева на обратную матрицу А-1:

A-1AX = A-1B.

Так как A-1A = Е, где Е - единичная матрица (диагональная матрица, у которой по главной диагонали расположены единицы), то решение системы

X = A-1В.

То есть для решения системы необходимо найти для матрицы А обратную A-1 и умножить ее справа на вектор-столбец В свободных членов.

Рассмотрим решение системы (2) матричным способом.

1. Введём матрицу А в ячейки B28: E3.

2. Ячейки диапазона G28: G31 заполняем значениями правых частей уравнений системы (b):

 

 

3. В ячейке B33 чтобы вычислить определитель матрицы А, вызываем Мастер функций и в категории Математические щелкнем на имени функции мопред, которая возвращает величину определителя матрицы. Откроется диалоговое окно Аргументы функции для функции мопред. В поле Массив указываем диапазон ячеек G28: G31.

4. Выделяем диапазон ячеек E33:E36, предназначенный для отображения найденного решения.

5. Поместим курсор в строку формул и вызовем Мастер функций. Выбираем функцию МУМНОЖ, которая возвращает результат умножения матриц и заполняем диалоговое окно Аргументы функции следующим образом:

 

 

6. Фрагмент электронной таблицы, реализующей решение, приведен на рисунке 4.


Рисунок 4 - Результаты вычислений

Для проверки результатов выполните умножим матрицы коэффициентов при неизвестных системы А на столбец со значениями найденного решения X. В результате должен получиться столбец чисел, отличающихся от значений вектора b на величину погрешности расчета или совпадающих с этими значениями.

7. Выделяем диапазон ячеек G33:G36 и вводим в строку формул

8. = МУМНОЖ(B28:E31;E33:E36) и нажмите комбинацию клавиш Ctrl Shift Enter.

9. Введенная формула преобразуется к виду {=МУМНОЖ(B28:E31;E33:E36)}, а на рабочем листе появится результат проверки решения системы уравнений. Как видно на рисунке 4 система уравнений решена правильно.


 

ЗАДАНИЕ 2

Решить задачу нелинейного программирования графическим способом и с помощью инструмента «Поиск решения» табличного процессора MS Excel. Найти при условии

 







Дата добавления: 2015-04-16; просмотров: 452. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия