Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямая общего положения - прямая, не параллельная и не перпендикулярная плоскостям проекций






Х

Х

2.2. Плоскость общего положения - плоскость, не параллельная и не перпендикулярная плоскостям проекций.

Х

X

 

 


 

2.3. Взаимное расположение прямой и точки.

Если точка лежит на прямой, то ее проекции принадлежат одноименным проекциям этой прямой.

 
 


m 2

 

Х

 

 

m 1

2.4. Взаимное положение прямых в пространстве.

2.4.1 Пересекающиеся прямые, точки пересечения одноименных проекций, которых лежат на одной линии связи.

 

Х

 

 

2.4.2. Параллельные прямые, проекции которых на плоскость параллельны (т.е. если на эпюре одноименные проекции прямых параллельны, то прямые параллельны в пространстве).

 

Х


2.4.3. Скрещивающиеся прямые. Конкурирующие точки.

Скрещивающиеся прямые - прямые, не параллельные друг другу и не пересекаются между собой. Точки пересечения их одноименных проекций не лежат на одной линии проекционной связи.

 

Х

 

Точки C и D; M и N - называются конкурирующими. С их помощью определяется видимость элементов на чертеже. Проекции этих точек С1 и D1, M2 и N2 совпадают, т.к. в пространстве они лежат на одном перпендикуляре к П1 и П2 соответственно. Проекции этих перпендикуляров и проекции точек на них позволяют установить, что точка С расположена выше и на горизонтальной проекции (виде сверху) она будет видима, при этом закрывая точку D. В свою очередь точка N расположена ближе к нам (точки M1 и N1) и на П2 (виде спереди) она будет видима, закрывая точку М.

2.4.4. Взаимно - перпендикулярные прямые.

ТЕОРЕМА. Если одна из сторон, образующих прямой угол параллельна плоскости проекций, то на данную плоскость прямой угол проецируются в натуральную величину. Однако, когда плоскость угла перпендикулярна плоскости проекций, то угол проецируется на эту плоскость в виде прямой линии.

 

 

Х

 

 


2.5. Определение натуральной величины отрезка прямой линии и углов наклона его к плоскостям проекций.

Натуральная величинаотрезка - это гипотенуза прямоугольного треугольника, одним катетом которого является проекция, а другим катетом - разность расстояний от концов отрезка до плоскости, на которой выбрана проекция (1-й катет). Угол между натуральной величиной отрезка и проекцией - есть угол наклона прямой к плоскости, на которой выбрана проекция этого отрезка.

А 2

В 2

Х

В 1

А 1


2.6. Прямая и точка, принадлежащие плоскости.

АКСИОМЫ:

1. Прямая принадлежит плоскости, если две ее точки принадлежат плоскости.

2. Точка принадлежит плоскости, если она лежит на прямой, принадлежащей этой плоскости.

Пример 1. Построить горизонтальную проекцию прямой m, принадлежащей плоскости (a // b).

m2 a2

B2

x

A1

 

B1

Пример 2. Найти недостающую проекцию точки D, принадлежащей плоскости АВС.

B2

 

 

· D2

A2 C2

X

C1

A1

 

 

В1


 

2.7. Пирамида и точки на ее поверхности.

Пример. Построить профильную проекцию пирамиды и найти

недостающие проекции точек, лежащих на ее поверхности.

Z

Х У

 
 


У


Тема 3. СПОСОБЫ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬ.

3.1. Способ замены плоскостей проекций.

Сущность способа замены плоскостей проекций заключается в том, что, оставляя неподвижными геометрические элементы, плоскости проекций заменяются новыми, позволяющими получить частное положение элементов с целью упрощения решения тех или иных задач.

 
 


П2

А2 А

 

 

В2 В

А1

 

В1

П 1

 

Х

А2 Пример 1. Определить

натуральную величину

отрезка АВ.

В2

 

 

Х

А 1

 

В1

 


Пример 2.Определить натуральную величину АВС. B2


 

С2

А2

Х С1

 

А1

В1

 


ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ.

Для нахождения точек пересечения прямой с плоскостью надо:

¨ Заключить прямую во вспомогательную (проецирующую) плоскость;

¨ Построить линию пересечения плоскостей (ЛПП) вспомогательной и заданной (вспомогательной плоскостью и поверхностью);

¨ Найти точки пересечения прямой с плоскостью (поверхностью) как точки пересечения ЛПП и заданной прямой;

¨ Определить видимость прямой.

Пример 1. Найти точку пересечения прямой а с плоскостью АВСD.

 

 

В2 а2

 

С2

 

 

D2

Х А2

В1

 

А1

 

С1

А1 D1

 


Тема 4. ПОВЕРХНОСТИ. ГРАННЫЕ ПОВЕРХНОСТИ И МНОГОГРАННИКИ. ПОВЕРХНОСТИ ВРАЩЕНИЯ.

4.1 Гранные поверхности и многогранники.

Решение задач с многогранниками сводится к построению проекций характерных точек.

Пример. Построить проекции сквозного призматического отверстия в пирамиде.

Z

 

Х У

 

У

 


4.2. Криволинейные поверхности.

Такие поверхности, как правило, задаются кинематическим способом.

Линейчатая поверхность формируется при движении прямой линии по произвольной направляющей:

- образующая

- н аправляющая

 
 

 


Цилиндрическая поверхность образуется при движении образующей параллельно самой себе или какому-либо направлению.

 

Нелинейчатая поверхность образуется при движении кривой линии.

 

 


 

4.3. Поверхности вращения.







Дата добавления: 2015-03-11; просмотров: 760. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия