Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рост массы растений





Задача. Необходимо найти уравнение роста целого растения, которое описывает изменение сухой массы растения в течение всего вегетационного периода. Параметры уравнения должны иметь физиологический смысл.

Гипотезы

1. Растение как объект моделирования определяется только одним параметром – своей сухой массой (M). М является зависимой переменной, варьирующей во времени t, где t – независимая переменная.

2. Рост происходит при увеличении количества одного субстрата S.

3. Скорость ростовой реакции прямо пропорциональна уровню субстрата S и сухой массе растения М, так что рост является автокаталитическим процессом. Скорость ростовой реакции равна kMS, где k – константа.

Математическая модель.

Из третьей гипотезы следует, что:

dM/dt = kSM [1]

Это дифференциальное уравнение не может быть решено, так как уровень субстрата S в процессе роста изменяется. Если S и M измерять в одинаковых единицах при предположении, то не происходит потеря вещества при превращении S в М, то:

dM = – dS [2]

Отсюда следует, что увеличение сухой массы точно соответствует уменьшению субстрата. Это уравнение можно записать в виде d (M + S) = 0, которое при интегрировании дает:

M + S = Mi + Si = const [3]

где Mi и Si – значения M и S в момент времени t = 0. M и S не могут быть отрицательными, поскольку теряют всякий физиологический смысл. М достигает максимального и конечного значения, когда исчерпывается субстрат S = 0. Соответственно, уравнение 3 можно записать в виде:

M + S = Mf = Mi + Si [4],

где Mf – максимальное значение M. Заменяя S из уравнения 4 в уравнении 1, получим:

dM / dt = k (MfM) M [5]

Это уравнение представляет модель в дифференциальной форме. Система имеет только одно переменное состояние, поэтому достаточно лишь одного уравнения.

 

Уравнение 5 принадлежит к типу уравнений с разделяемыми переменными, и его можно представить в виде:

=

Левую часть преобразуем следующим образом:

=

Интегрирование дает:

= kt

из которого получаем:

M = [6]

 

Рис. 1 Кривая роста целого растения, построенная на основе уравнения 6 при Mi = 1, Mf = 10 и k = 0,1. Обозначения: М – масса, t – время.

Константы полученного уравнения имеют приближенный физиологический смысл:

Мi – начальное значение сухой массы растения;

Mfk – максимальная удельная скорость роста, достигаемая растением в начальной фазе роста, когда отсутствует ограничение субстратом;

Mf – конечная масса растения, которая определяется начальным количеством доступного субстрата и начальной массой сухого вещества растения.

График, отражающий рост растения согласно полученному уравнению, представлен на рис. 1.

 







Дата добавления: 2015-04-16; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия