Студопедия — Современные методы исследования биологических структур. Электронная микроскопия, предел разрешения электронного микроскопа. Рентгеноструктурный анализ, формула Вульфа - Брэггов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Современные методы исследования биологических структур. Электронная микроскопия, предел разрешения электронного микроскопа. Рентгеноструктурный анализ, формула Вульфа - Брэггов






Вопрос 7. Представления о войне и международных отношениях.

Вопрос 8. Общая оценка политической теории Гегеля.

Современные методы исследования биологических структур. Электронная микроскопия, предел разрешения электронного микроскопа. Рентгеноструктурный анализ, формула Вульфа - Брэггов.

Рентгеноструктурный анализ, электронно-микроскопические исследования, флуоресцентный анализ, электронный парамагнитный резонанс, ядерный магнитный резонанс. Наибольшие успехи в раскрытии особенностей строения био­логических мембран были достигнуты в электронно-микроскопи­ческих исследованиях. В электронном микроскопе вместо светового пучка на иссле­дуемый объект направляется пучок электронов, разогнанных до больших скоростей.

Известно, что электронам с высокими скоростями тоже прису­щи волновые свойства, в том числе явление дифракции. Однако при достаточно больших скоростях, согласно формуле де Бройля, длина волны мала и соответственно мал предел разрешения. Так, если электроны ускоряются электрическим полем с напряжением 105В, их скорость достигает 106 м/с, длина волны уменьшается, и предел разрешения составляет порядка 0,1 нм, что позволяет рас­смотреть отдельные детали строения биологических мембран.

В электронном микроскопе достигается увеличение в сотни тысяч раз, что дало возможность исследовать строение клет­ки, клеточных органелл и биологических мембран.

Недостатком электронной микроскопии является деформация живого объекта в процессе исследования. Перед началом электронно-микроскопических исследований клетка проходит через многие стадии предварительной обработки: обезвоживание, за­крепление, ультратонкий срез, обработка препаратов вещества­ми, хорошо рассеивающими электроны (например, золотом, се­ребром, осмием, марганцем и т.п.). При этом изучаемый объект значительно изменяется. Несмотря на это, успехи в изучении клетки при помощи электронного микроскопа несомненны.

Рентгеноструктурный анализ позволяет обнаруживать упорядоченность в распо­ложении атомов и определять параметры упорядоченных структур (например, расстояния между кристаллографически­ми плоскостями). Исследования дифракции рентгеновских лу­чей на мембране подтвердили относительно упорядоченное расположение липидных молекул в мембране — двойной молекуляр­ный слой с более или менее параллельно расположенными жирно-кислыми хвостами, дали возможность точно определить рас­стояние между полярной головой липидной молекулы и метильной группой в конце углеводородной цепи.

 

3. Фазовое состояние фосфолипидов в мембране. Фазовые переходы мембранных липидов. Модельные липидные мембраны: плоские бислойные липидные мембраны (БЛМ), липосомы; их использование для изучения свойств биологических мембран. Липосомы в медицине.

Липидные бислойные мембраны при физиологических усло­виях - жидкие, время оседлой жизни фосфолипидных моле­кул в мембране мало: т = 10~7 - 10~8 с. Бислойная липидная фаза биологических мембран соответ­ствует смектическому жидкокристаллическому состоянию (расположены упорядочено). При понижении температуры происходит переход из жидкокристаллическо­го в гель-состояние, которое условно иногда называют твердокристаллическим В гель - состоянии молекулы расположены еще более упо­рядочено, чем в жидкокристаллическом.. В жидком кристалле за счет теплового движения возможны транс-гош-переходы, хвосты молекул изгибаются, их параллельность друг другу в отдель­ных местах нарушается, особенно сильно в середине мемб­раны. Для нормального функционирования мембрана должна быть в жидкокристаллическом состоянии. Поэтому в живых систе­мах при продолжительном понижении температуры окружаю­щей среды наблюдается адаптационное изменение химического состава мембран, обеспечивающее понижение температуры фа­зового перехода. Температура фазового перехода понижается при увеличении числа ненасыщенных связей в жирно-кислотных хвостах. В хво­сте молекулы может быть до четырех ненасыщенных связей, фосфолипидов. Липосомы, или фосфолипидные везикулы (пузырьки), полу­чают обычно при набухании сухих фосфолипидов в воде или при впрыскивании раствора липидов в воду. При этом проис­ходит самосборка бимолекулярной липидной мембраны. Отдельные бимолекулярные слои многослойной липосомы отделены водной средой. Толщина липидных слоев составля­ет, в зависимости от природы липидов, 6,5 - 7,5 нм, а расстоя­ние между ними - 1,5 - 2 нм. Диаметр многослойных липосом колеблется в пределах от 60 нм до 400 нм и более. Липосомы нашли непосредственное применение в медици­не. Например, можно заключить внутрь липосом лекарствен­ный препарат и использовать как фосфолипидную микрокап­сулу для доставки лекарства в определенные органы и ткани.

Плоские бислойные липидные мембраны (БЛМ) - другой тип модельных мембран. Такие мембраны получают на ма­леньких отверстиях диаметром около 1 мм в пластинке из пла­стика (например, фторопласта), погруженной в водную сре­ду. На отверстие наносят каплю раствора липида (в спирте, хлороформе, гептане или других растворителях). Раствори­тель диффундирует из раствора в воду, и на отверстии остает­ся пленка липида. Эта пленка спонтанно утончается до тех пор, пока не образуется бимолекулярный слой толщиной око­ло 6 нм. Лишний липид собирается в виде ободка-торуса у кра­ев отверстия Плоские липидные мембраны, наряду с липосомами, широ­ко используются в качестве моделей для изучения электри­ческих свойств мембраны, их проницаемости и других науч­ных исследований. С помощью модельных мембран изучают ряд функций биологических мембран, а том числе, барьерную (например, селективность проницаемости - хорошую прони­цаемость для воды и плохую для ионов). Можно моделировать биологический транспорт, вводя в модельную мембрану мо­лекулы-переносчики.

 

4. Диффузия липидных молекул в мембранах: латеральная, флип - флоп. Частота перескоков молекул. Люминесцентные методы изучения подвижности молекул в мембране, флуоресцентные метки и зонды.

Латеральная диффузия - это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны. Среднее квадратичное перемещение S кв. молекул при диф­фузии за время t можно оценить по формуле Эйнштейна:

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток - флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Частота перескоков (число перескоков в секунду) молекулы с одного места на другое вследствие латеральной диффузии может быть найдена по формуле: где f - площадь, занимаемая одной молекулой на мембране.

Флип-флоп - это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах - липосомах Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1 час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

 

 

5. Электрохимический потенциал. Транспорт веществ через биологическую мембрану: пассивный и активный, принципиальные различия между ними.

Химическим потенциалом данного вещества Мю называется величина, численно равная энергии Гиббса, приходящаяся на один моль этого вещества. Математически он определяется как частная производная от энергии Гиббса G по количеству k-го вещества, при постоянстве температуры Т, давления Р и количеств всех других веществ m1 (l не = k):

Пассивный транспорт - это перенос вещества из мест с боль­шим значением электрохимического потенциала к местам с его меньшим значением.

Пассивный транспорт идет с уменьшением энергии Гиббса, и поэтому этот процесс может идти самопроизвольно без затра­ты энергии. Плотность потока вещества j при пассивном транспорте под­чиняется уравнению Теорелла: где U - подвижность частиц, С - концентрация. Знак минус показывает, что перенос происходит в сторону убывания Мю. Плотность потока вещества - это величина, численно равная количеству вещества, перенесенного за единицу времени через единицу площади поверхности, перпендикулярной направле­нию переноса:

Уравнение Нернста—Планка:

Активный транспорт — это перенос вещества из мест с мень­шим значением электрохимического потенциала в места с его большим значением.

Активный транспорт в мембране сопровождается ростом энергии Гиббса, он не может идти самопроизвольно, а только в сопряжении с процессом гидролиза аденозинтрифосфорной кислоты (АТФ), то есть за счет затраты энергии, запасенной в макроэргических связях АТФ. Активный транспорт веществ через биологические мембра­ны имеет огромное значение.За счет активного транспорта в организме создаются градиенты концентраций, градиенты электрических потенциалов, градиенты давления и т.д., под­держивающие жизненные процессы, то есть с точки зрения тер­модинамики активный перенос удерживает организм в нерав­новесном состоянии, поддерживает жизнь.

 

 







Дата добавления: 2015-04-16; просмотров: 4082. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия