Промышленные роботы
Автоматизация вспомогательных операций смены заготовок и деталей на станках с ЧПУ создает предпосылки для внедрения «безлюдной» технологии в механообрабатывающем производстве, а также повышает его эффективность за счет сокращения простоев станков между отдельными рабочими циклами. Из-за многообразия компоновочных схем станков и способов их загрузки, а также типов изготавливаемых деталей конструкции устройств для автоматической смены заготовок могут быть различными. В автоматизированных станочных системах данные устройства, как правило, включают в состав гибкого производственного модуля для соединения его с транспортными и накопительными устройствами. При этом выбор конструкции загрузочного устройства к станку зависит от принятой схемы транспортно-накопительной системы. В то же время загрузочные устройства целесообразно механически отделить от станка. Конструктивная автономность устройств автоматической смены заготовок создает возможность их проектирования в виде достаточно универсальных манипуляционных механизмов, имеющих собственные приводы и средства электро-, гидро- или пневмоавтоматики. Первые механизмы такого типа были созданы в 60-ые годы прошлого столетия. Так в статье, опубликованной в одном из машиностроительных журналов, посвященной появлению на заводах США манипуляционных механизмов первого поколения, сообщалось, что в американской металлообрабатывающей промышленности появился новый тип производственного рабочего. Он не состоит в профсоюзе, не пьет кофе в обеденный перерыв, работает 24 ч в сутки и не интересуется пособиями или пенсионной оплатой. Он осваивает новую работу за несколько минут и всегда выполняет ее хорошо. Он никогда не жалуется на жару, пыль и запахи и никогда не получает увечий на работе. Он – промышленный робот (ПР). Три составные элемента ПР собраны в единое целое (рис. 3. 79) – работающая рука 1, передвигающиеся «ноги» 3 и анализирующий действия искусственный интеллект (память) 2. На металлообрабатывающих предприятиях ПР выполняют формообразующую, т.е. основную производственную функцию технологической машины, например, роботы-сварщики, роботы-сборщики; транспортную функцию роботы-манипуляторы, транспортирующие заготовки, устанавливающие и снимающие их со станков; контрольную функцию роботы-контролеры. Таким образом, ПР – это автономно Рис. 3.79. Классическая структура работающая машина – автомат, пред- промышленного робота назначенная для воспроизведения не- которых двигательных и умственных функций человека при выполнении вспомогательных и основных производственных операций без непосредственного участия человека и наделенная для этого некоторыми его способностями (слухом, зрением, осязанием, памятью и т.п.), а также способностью к самообучению и адаптации к внешней среде. Все многообразие устройств, относящихся к ПР можно разделить на три поколения (типа). ПР 1-го поколения – роботы с обучением. Этот тип роботов обладает способностью запоминать программу по выполнению разнообразных операций, обладает автономными свойствами и имеет ограниченные возможности по восприятию рабочей среды. Движения осуществляются по жесткой программе. ПР 2-го поколения (адаптивные роботы) – оснащены датчиками обратной связи, воспринимающие информацию от окружающей среды, Такие роботы имеют основную программу и подпрограммы, которые выбираются в зависимости от информации, полученной от внешней среды. Следовательно, эти роботы, имеющие ЭВМ или обслуживаемые ЭВМ, обладают «зрением» и «осязанием» и способны ориентироваться в окружающей обстановке. ПР 3-го поколения (интеллектуальные роботы) наделены искусственным интеллектом. Для их работы достаточно задать конечную цель работы, т.е. алгоритм поиска. Такие роботы могут воспринимать и логически оценивать окружающую обстановку и определять движения, необходимые для достижения заданной цели работы. Для управления интеллектуальными роботами требуются средства вычислительной техники. ПР 1-го типа с цикловыми и числовыми системами программного управления применяют для автоматизации загрузки-выгрузки обрабатываемых деталей, а также для выполнения транспортных и вспомогательных операций на металлорежущих станках с программным управлением. Обычно эти ПР называют роботами-манипуляторами (РМ). Они могут быть как автономными машинами-автоматами (рис. 3.79), так и встроенными в станок или другую технологическую машину. Технологические возможности и конструкцию ПР определяют несколько основных параметров, включаемых в их техническую характеристику: грузоподъемность, число степеней подвижности, рабочая зона, мобильность, быстродействие, погрешность позиционирования, типы управления и привода. Грузоподъемность ПР определяется наибольшей массой изделия, например, детали, инструмента или приспособления, которым он может манипулировать в пределах рабочей зоны. В основном в типоразмерный ряд ПР, предназначенных для машиностроительного производства, входят модели грузоподъемностью от 5 до 500 кг. Число степеней подвижности ПР определяется общим числом поступательных и вращательных движений манипулятора, без учета движений зажима-разжима его схвата. Большинство ПР в машиностроении имеет до пяти степенй подвижности. Рабочая зона ПР определяет пространство, в котором может перемещаться схват (кисть руки) манипулятора. Обычно она характеризуется наибольшими перемещениями захватного устройства вдоль и вокруг каждой оси координат. Мобильность ПР определяется его способностью совершать разные по характеру движения: перестановочные (транспортные) перемещения между рабочими позициями, находящимися на расстоянии, большем, чем размеры рабочей зоны манипулятора; установочные перемещения в пределах рабочей зоны, определяемой конструкцией и размерами манипулятора; ориентирующие перемещения схвата, определяемые конструкцией и размерами кисти – конечного звена манипулятора. ПР могут быть стационарными, не имеющими перестановочных перемещений, и передвижными, обеспечивающими все виды движений. Быстродействие ПР определяется наибольшими линейными и угловыми скоростями перемещений конечного звена манипулятора. Большинство ПР, применяемых в машиностроении, имеет линейные скорости манипулятора от 0,5 до 1,2 м/с, а угловые – от 90 до 180 0/с. Погрешность позиционирования манипулятора характеризуется средним значением отклонений центра схвата от заданного положения и зоной рассеяния данных отклонений при многократном повторении цикла установочных перемещений. Наибольшее число ПР, применяемых в машиностроении, имеет погрешность позиционирования от ± 0,05 до ± 1,0 мм. Устройства программного управления ПР могут быть цикловыми (индекс Ц), числовыми позиционными (индекс П), контурными (индекс К) или контурно-позиционными (индекс С). Приводы исполнительных органов ПР могут бытьэлектрическими, гидравлическими, пневматическими или комбинированными, например, электрогидравлическими, пневмогидравлическими. Рассмотрим ПР первого типа, т.е. робот-манипулятор модели 3388-Ш. Этот робот (рис. 3. 80) предназначен для выполнения погрузо-разгрузочных и других вспомогательных операций в металлообработке. Робот стационарного типа имеет четыре степени подвижности: перемещение z манипулятора вдоль оси Z (подъем и опускание); выдвижение x механической руки вдоль оси X (вперед и назад), поворот манипулятора относительно оси Z (движение С); поворот кисти с захватным устройством относительно оси X (движение А). Все перемещения осуществляются от пневмо- и гидроприводов. Величины наибольших перемещений по каждой из степеней подвижности, характеризующие рабочую зону манипулятора, также показаны на рис. 3.80. Линейные перемещения выполняются со скоростью 0,7 – 1 м/с, а угловые – со скоростью 90 0 /с. Конструктивно рассматриваемый ПР состоит из нескольких сборочных едениц, смонтированных на основании 1 в виде жесткой сварной рамы, закрытой кожухами. На раме установлен подъемно-поворотный механизм 2 манипулятора, который может быть оснащен одной или двумя сменными механическими руками 3. Руки можно устанавливать относительно друг друга под углом 30 – 600 при- наладке манипулятора. Грузоподъемность каждой руки 10 кг. Пневмогидравлические приводы подьема-опускания и поворота манипулятора размещены в основании ПР. Для выдвижения руки используется пневмоцилиндр 4, размещенный внутри корпуса. На базирующий фланец руки крепится кисть 5 с захватными устройствами 6 различного типа. Привод схвата осуществляется пневмоцилиндром, установленным в корпусе кисти. Движение поворота кисти со схватом осуществляется пневмоцилиндрами 7 и передачей типа рейка – шестерня, установленными на фланце с задней стороны руки. Устройство циклового программного управления роботом размещено во внутренней полости основания. Пульт 8 оператора смонтирован на наклонной крышке основания, за пределами рабочей зоны манипулятора.
Рис. 3. 80. Универсальный промышленный робот первого поколения
Применение РМ наиболее эффективно в робототехнических комплексах, гибких производственных модулях, на автоматизированных участках из стан-
Рис. 3. 81. Возможные компоновки робототехнических комплексов
станков с ЧПУ, в гибких производственных системах. Робот 1 можно поставить для обслуживания одного станка 2 (рис. 3.81, а), нескольких станков 2 (рис. 3.81, б). Робот может перемещаться вдоль фронта станков (рис. 3.81, в). Робот перемещает заготовки из накопителя (магазина) 3 к станкам и между станками. Во всех случаях - это автоматизированный участок, на котором автоматизированы все основные и вспомогательные операции. При обеспечении таких участков системами транспортировки и складирования заготовок с общей диспетчеризацией управления на базе ЭВМ воспроизводится гибкая производственная система. На рис. 3.82 приведена структурная схема комплексной системы с применением промышленного робота. Заготовки из заготовительного производства ЗП поступают в пункт приема заготовок ППЗ, состоящий из ряда бункеров (Б1 … Бп). Опознающее устройство ОУ позволяет установить номер группы и подгруппы заготовок. Далее детали поступают на склад заготовок СЗ или на склад полуфабрикатов СП. По сигналу от станка или диспетчера робот – перекладчик-кантователь РПК берет со склада нужную деталь и устанавливает ее на спутник Рис. 3. 82. Блок-схема автоматизированного транспортной системы ТС. участка с использованием роботов Спутник с деталью движется до тех пор, пока не остановится на позиции, определяемой программой. Промышленный робот (ПР) переносит деталь на многооперационный станок МС и устанавливает ее в патрон, начинается обработка. Обработанную ранее деталь робот-манипулятор снимает и устанавливает на тот же спутник. Если деталь не обработана полностью за одну установку, она поступает вновь в СП, а оттуда на другой станок. В зависимости от характера производства, вида выполняемых операций или типа основного оборудования, обслуживаемого в автоматическом цикле, ПР могут быть разной степени универсальности, которая определяется их функциональными возможностями и переналаживаемостью. В соответствии с этими признакам ПР разделяют на специальные, специализированные (целевые) и универсальные (многоцелевые). Специальные ПР предназначены для выполнения определенных технологических операций или обслуживания конкретных моделей технологического оборудования. Для этих роботов характерно конструктивное единство с основным или вспомогательным оборудованием. Входящим в состав гибкого производственного, например, обрабатывающего модуля. Управление циклом работы манипулятора осуществляется от устройства ЧПУ технологическим модулем. Специализированные (целевые) ПР предназначены для выполнения технологических операций одного вида (например, сборки, сварки, окрашивания) или только вспомогательных переходов, требующих одинаковых манипуляционных действий. Универсальные ПР предназначены для выполнения технологических операций различных видов. Они могут быть использованы как для основных технологических операций, так и для выполнения различных вспомогательных функций при обслуживании оборудования различного технологического назначения, требующих различных манипуляционных движений. Для таких роботов характерна полная конструктивная независимость от основного технологического оборудования, с которым они совместно работают, а также большое число степеней подвижности (5 - 7), обеспечивающие их широкие функциональные возможности.
|