Мембранные органеллы
Комлекс Гольджи-Строение - Скопление уплощенных цистерн, мелкие пузырьки, конденсированные вакуоли.. Функция:1конденсация,созревание и формирование секрета 2синтез углеводов3образоание лизосом 4 трансформация мембран митохондрии, Структура: Мешочки округлой или вытянутой формы, стенка состоит из двух мембран. Наружная мембрана гладкая, обладает обычной проницаемостью. Внутренняя мембрана обладает избирательной проницаемостью, в ней есть впячивания — кристы, в нее встроены ферменты дыхательной цепи, ферментный комплекс АТФ-синтетаза, транспортные белки. Полость митохондрии заполнена матриксом, который состоит из множества ферментов (цикл Кребса,,бета-окисление липидов и др.), рибосом, ДНК, РНК, промежуточных продуктов распада жирных кислот и углеводов Функция: 1синтез АТФ. 2 участие в синтезе стероидных гормонов К мембранным органеллам относятся: грЭПС, Структура: система уплощенных,трубчатых, везикулярных структур. Функция:сегрегация белковых молекул от гиалоплазмы 2 биосинтез белков. 3 биосинтез мембранных белков агрЭПС. Структура: система уплощенных, трубчатых структур. Функция: участие в синтезе липидов 2 метаболизм гликогена 3 синтез холистерина и стероидных гормонов. 4 накопление ионов Ca Лизосомы - Структура: Мешочки, стенка которых сделана из мембраны, внутри находятся гидролитические ферменты (протеазы, нуклеазы, гликозидазы, липазы, фосфолипазы, сульфатазы — более 40 ферментов), разрушающие макромолекулы — белки, углеводы и жиры до низкомолекулярных продуктов, которые могут через мембрану диффундировать в цитозоль. Внутри лизосом поддерживается кислая рН, так как ферменты активны в кислой среде. Вновь образованные лизосомы называются первичными лизосомами, фаголизосомы называются вторичными лизосомами, лизосомы с оставшимися в них непереваренными компонентами называются остаточными тельцами Функция: Расщепление биоплимеров (белков, углеводов и жиров) до мономеров (аминокислот, глицерина и жирных ксслот, моносааров), расщепление фагоцитированного материала Пероксисомы - Структура: Сферические мембр.органеллы Функция:окисление аминокислот,защита клетки от перекиси водорода,участие в расщепление жирных кислот Немембранные: Рибосомы -мелкие,плотные. Рибосома состоит из 2х субъединиц-большой и малой. Функция:биосинтез белка.
Микротрубочки -Полые цилиндры, сделанные из белка тубулина Функция: Поддержание формы клетки, участие в формировании ресничек, жгутиков, веретена деления и связанные с ними функции реснички, жгтики -Состоят из 2 частей: базального тельца, расположенного в цитоплазме и состоящего из 9 триплетов микротрубочек и аксонемы — выроста над поверхностью клетки, который снаружи покрыта мембраной, а внутри имеет 9 пар микротрубочек, располагающихся по окружности, и одну пару в центре. Функция: Движение клетки, направление движения жидкости над клеткой
Клеточный центр -образован 2мя полыми цилиндр.структурами -центриолями Функция: Центросфера клеточного центра — место роста всех микротрубочек клетки. Центриоли определяют плоскость деления клетки, от них растут микротрубочки веретена деления и образуются базальные тельца ресничек и жгутиков Микрофиламенты -Тонкие нити, образующие в клетке трехмерную сеть. Функция: Поддержание формы клетки, опора для внутриклеточных структур, направление движения внутриклеточных процессов, движение и сокращение клетки, формирование межклеточных контактов
Вопрос 12: Понятие о метаболизме клетки. Иногда понятие "метаболизм" подменяется более широким – "обмен веществ". Однако, обмен веществ – более широкое понятие, чем метаболизм, включающее как процессы на клеточном уровне, так и на уровне целостной особи. Эта разница делается незаметной при рассмотрении одноклеточных организмов.
Обмен веществ – последовательное потребление, превращение, использование, накопление и потеря веществ и энергии в живых организмах в процессе жизни, позволяющие им самосохраняться, расти, развиваться и самовоспроизводиться в условиях окружающей среды, а также адаптироваться в ней. Обмен веществ состоит из непрерывно протекающих процессов ассимиляции и диссимиляции. Обмен веществ, как и метаболизм, сложно регулируется в организме. В дополнение к внутриклеточным процессам у высших организмов имеются механизмы гормональной регуляции, координируемые нервной системой.
Метаболизм складывается из двух процессов, одновременно протекающих в клетке, – катаболизма и анаболизма. Катаболизм, или диссимиляция, или энергетический обмен – совокупность реакций, в которых происходит расщепление сложных органических молекул до более простых конечных продуктов (метаболитов); при этом высвобождающаяся во время расщепления химическая энергия запасается в доступной для использования клеткой форме.
Метаболит – любое вещество, возникающее в организме в результате обмена веществ (метаболизма).
Энергетический обмен состоит из 3 этапов: 1) подготовительный: происходит расщепление высокомолекулярных органических веществ до низкомолекулярных в процессе гидролиза, идущего при участии воды. Он протекает в пищеварительном тракте, а на клеточном уровне – в лизосомах. Вся энергия, выделяющаяся на подготовительном этапе, рассеивается в виде тепла. Белки + Н2О → аминокислоты + Q (тепло); Углеводы + Н2О → глюкоза + Q (тепло); Жиры + Н2О → глицерин и жирные кислоты + Q (тепло). 2) гликолиз, бескислородное окисление. Процесс гликолиза протекает в цитоплазме. Глюкоза расщепляется до 2 молекул пировиноградной кислоты (ПВК), которые в зависимости от типа клеток и организмов могут превращаться в молочную кислоту, спирт или другие органические соединения. При этом выделяющаяся энергия частично запасается в виде 2 молекул АТФ, а частично расходуется в виде тепла. Бескислородные процессы называются брожением. С6Н12О6 → 2 С3Н4О3 + 4 Н → 2 С3Н6О3 (или 2 С2Н5ОН + 2 СО2). 3) кислородный – дыхание. Биологическое окисление протекает в митохондриях. ПВК поступает в митохондрию, где преобразуется в уксусную кислоту, соединяется с ферментом-переносчиком и входит в цикл Кребса. В результате этих реакций при участии кислорода образуются углекислый газ и вода, а на кристах митохондрий за счет выделяющейся энергии синтезируется 36 молекул АТФ. 2 С3Н4О3 + 6 О2 + 4 Н → 6 СО2 + 6 Н2О Суммарное уравнение энергетического обмена выглядит следующим образом: С6Н12О6 + 6 О2 → 6 СО2 + 6 Н2О + Q (тепло) + 38 АТФ Анаболизм, или ассимиляция, или пластический обмен – это совокупность реакций, в которых из малых молекул-предшественников или мономерных "строительных блоков" синтезируются белки, нуклеиновые кислоты, липиды, полисахариды и прочие клеточные компоненты; эти реакции требуют затраты энергии для своего осуществления. Пластический обмен включает в себя 2 важнейших биологических процесса – фотосинтез и биосинтез белка. Фотосинтез – процесс первичного синтеза органических веществ из неорганических (углекислого газа и воды) под действием солнечного света. Протекает у растений в хлоропластах. Выделяют 2 фазы фотосинтеза: 1) световая фаза. Протекает на мембранах тилакоидов хлоропластов только при участии солнечного света. За счет энергии солнца протекает 3 группы реакций:
2) Темновая фаза. Протекает в строме хлоропластов. Наличие света необязательно. Источником энергии являются синтезированные в световой стадии молекулы АТФ. Происходит фиксация углерода. Суммарное уравнение фотосинтеза: 6 СО2 + 6 Н2О → С6Н12О6 + 6 О2↑
Строение и функции АТФ: По строению относится к нуклеотидам, состоит из: · моносахарида рибозы · азотистого основания аденина · трех остатков фосфорной кислоты, причем последние два остатка присоединены с помощью особой, макроэргической связи, в которой содержится много энергии (40 кДж/моль). Функция: служит универсальным источником энергии в клетках. Синтез и распад АТФ в клетке идет постоянно, время жизни одной молекулы – менее 1 минуты, за сутки каждая молекула АТФ распадается (и тут же синтезируется) 2-3 тысячи раз.
Вопрос;5: Клетки прокариот и эукариот Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты). Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В про-кариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки. Цитоплазма прокариот по сравнению с цитоплазмой эука-риотических клеток значительно беднее по составу структур. Там находятся многочисленные более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хло-ропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки. Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.
Вопрос 7: Цитоскелет Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.
Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система
Цитоскелет-сложная,трехмерная сеть немембр. органелл. Функции: опорно- двигательная. 2 поддержание формы клетки 3 перемещение компонентов внутри клетки 4 обеспечение подвижности клетки. 5 транспорт веществ внутри клетки и из нее.
Вопрос 6: Строение и функции клеточной мембраны Основу плазмалеммы, как и других мембран в клетках (например, митохондрий, пластид и т. д.), составляет слой липидов, имеющий два ряда молекул (рис. 1). Поскольку молекулы липидов полярны (один полюс у них гидрофилен, т. е. притягивается водой, а другой гидрофобен, т. е. отталкивается от воды), то и располагаются они в определенном порядке. Гидрофильные концы молекул одного слоя направлены в сторону водной среды — в цитоплазму клетки, а другого слоя — наружу от клетки — в сторону межклеточного вещества (у многоклеточных) или водной среды (у одноклеточных). Выделяют периферические белки (они расположены только по внутренней или наружной поверхности мембраны), интегральные (они прочно встроены в мембрану, погружены в нее, способны менять свое положение в зависимости от состояния клетки). Функции мембранных белков: рецепторная, структурная (поддерживают форму клетки), ферментативная, адгезивная, антигенная, транспортная. Схема строения элементарной мембраны жидкостно-мозаичная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение. Молекулы белков мозаично встроены в бимолекулярный слой липидов. С внешней стороны животной клетки к липидам и молекулам белков плазмалеммы присоединяются молекулы полисахаридов, образуя гликолипиды и гликопротеины. Эта совокупность формирует слой гликокаликса. С ним связана рецепторная функция плазмалеммы (см. ниже); также в нем могут накапливаться различные вещества, используемые клеткой. Кроме того, гликокаликс усиливает механическую устойчивость плазмалеммы. В клетках растений и грибов есть еще клеточная стенка, играющая опорную и защитную роль. У растений она состоит из целлюлозы, а у грибов — из хитина. Схема строения элементарной мембраны жидкостно-мозаичная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение. Важнейшая функция мембраны: способствует компартментации — подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Этим достигается высокая упорядоченность внутреннего содержимого любой эукариотической клетки. Компартментация способствует пространственному разделению процессов, протекающих в клетке. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий). Другие функции: 1) барьерная (отграничение внутреннего содержимого клетки); 2) структурная (придание определенной формы клеткам в соответствии с выполняемыми функциями); 3) защитная (за счет избирательной проницаемости, рецепции и антигенности мембраны); 4) регуляторная (регуляция избирательной проницаемости для различных веществ (пассивный транспорт без затраты энергии по законам диффузии или осмоса и активный транспорт с затратой энергии путем пиноцитоза, эндо- и экзоцито-за, работы натрий-калиевого насоса, фагоцитоза)). Путем фагоцитоза поглощаются целые клетки или крупные частицы (например, вспомните питание у амеб или фагоцитоз защитными клетками крови бактерий). При пиноцитозе происходит поглощение мелких частиц или капелек жидкого вещества. Общим для обоих процессов является то, что поглощаемые вещества окружаются впячивающейся наружной мембраной с образованием вакуоли, которая затем перемещается в глубь цитоплазмы клетки. Экзоцитоз представляет собой процесс (будучи также активным транспортом), противоположный по направлению фагоцитозу и пиноцитозу (рис.13). С его помощью могут выводиться непереваренные остатки пищи у простейших либо образованные в секреторной клетке биологически активные вещества. 5) адгезивная функция (все клетки связаны между собой посредством специфических контактов (плотных и неплотных)); 6) рецепторная (за счет работы периферических белков мембраны). Существуют неспецифические рецепторы, которые воспринимают несколько раздражителей (например, холодовые и тепловые терморецепторы), и специфические, которые воспринимают только один раздражитель (рецепторы световоспринимающей системы глаза); 7) электрогенная (изменение электрического потенциала поверхности клетки за счет перераспределения ионов калия и натрия (мембранный потенциал нервных клеток составляет 90 мВ)); 8) антигенная: связана с гликопротеинами и полисахаридами мембраны. На поверхности каждой клетки имеются белковые молекулы, которые специфичны только для данного вида клеток. С их помощью иммунная системы способна различать свои и чужие клетки. Обмен веществ между клеткой и окружающей средой осуществляется разными способами — пассивными и активными.
|