Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Внутренняя энергия и энтальпия





1. Внутренней энергией U называется энергия системы, зависящая только от ее термодинамического состоянии. Для системы, нe подверженной действию внешних сил и находящейся в состоянии макроскопического покоя, внутренняя энергия представляет собой полную энергию системы. В некоторых простейших случаях внутренняя энергия равна разности между полной энергией W системы и суммой кинетической энергии WK ее макроскопического движения и потенциальной энергии Wп, обусловленной действием на систему внешних силовых полей:
U = W - (Wk + Wп)

Внутренняя энергия системы равна сумме: а) кинетической энергии хаотического движения микрочастиц системы (молекул, атомов, ионов, свободных электронов и др.), б) потенциальной энергии взаимодействия этих частиц, в) энергии взаимодействия атомов или ионов в молекулах, г) энергии электронных оболочек атомов и ионов, д) внутриядерной энергии, с) энергии электромагнитного излучения.
2. Внутренняя энергия является однозначной функцией состояния системы: ее изменение DU при переходе системы из состояния 1 в состояние 2 не зависит от вида процесса и равно
DU = U2 - U1

3° Внутренняя энергия может быть определена только с точностью до постоянного слагаемого Я/0, которое не может быть найдено методами термодинамики. Однако это несущественно, так как при термодинамическом анализе системы приходится иметь дело не с абсолютными зна-чениями ее внутренней энергии, а с не зависящими от Ua изменениями этой энергии в различных процессах. По-этому часто полагают f/0 = 0, а под внутренней энергией системы понимают только тс ее составляющие, которые изменяются в рассматриваемых процессах. Например, при не слишком высоких температурах внутреннюю энер-гию идеального газа можно считать равной сумме кине-тических энергий хаотического движения его молекул.
4. Энтальпией H (теплосодержанием, тепловой функцией) называется функция состояния термодинамической системы, равная сумме ее внутренней энергии и произведения давления на объем системы, выраженного в тех же единицах:

H = U + pV

16)

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v(изохорный процесс), либо при постоянном давлении Q p(изобарный процесс).

· В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции Δ H rO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение

4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж

показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции.

В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.

Закон Гесса[править | править исходный текст]

Основная статья: Закон Гесса

В основе термохимических расчётов лежит закон Гесса: Тепловой эффект (∆Н) химической реакции (при постоянных Р и Т) зависит от природы и физического состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Следствия из закона Гесса:

1. Тепловые эффекты прямой и обратной реакций равны по величине и противоположны по знаку.

2. Тепловой эффект химической реакции (∆Н) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ, взятых с учётом коэффициентов в уравнении реакции (то есть помноженные на них).

Закон Гесса может быть записан в виде следующего математического выражения:

.

С помощью закона Гесса можно рассчитать энтальпии образования веществ и тепловые эффекты реакций, которые невозможно измерить экспериментально.

17)

17

Энтропия – функция состояния системы, приращение которой (DS) равно минимальной теплоте (Q), поступившей в систему в обратимом изотермическом процессе, деленной на абсолютную температуру (T), при которой совершается этот процесс.

Изотермическим называется процесс, протекающий при постоянной Т (Т=const).

DS=Qmin/T, где:

DS [Дж·моль-1·К-1 ].

Энтропия связана с вероятностью состояния системы уравнением Больцмана:

S=KБlnw, где:

КБ – постоянная Больцмана=R/N= 1,38 10-23 Дж К-1;

w - вероятность состояния системы. Это число микросостояний, которым может быть реализовано данное макросостояние.

При абсолютном нуле прекращается колебательные движения частиц в узлах кристаллической решетки, и макросостояние кристалла при этом обусловлено одним вариантом расположения частиц, т. е. w=1 =>

S=КБln1, а т.к. ln1=0, то S=0.

Ростом энтропии сопровождаются такие самопроизвольные процессы, как испарение жидкости, таяние льда, растворение веществ в растворителях, т.е. процессы, которые приводят к увеличению беспорядка в системе.

Снижением энтропии сопровождаются кристаллизация веществ, реакции полимеризации, поликонденсации, т.е. процессы, которые приводят к увеличению упорядоченности в системе.

Т.о. энтропия является мерой неупорядоченности системы.







Дата добавления: 2015-04-19; просмотров: 967. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия