Картирование с использованием транслокаций и делеций
Используется гибрид клетки и хромосома с хромосомными перестановками. Транслокация – хромосомная перестройка, в ходе которой хромосомы обмениваются участками, причем негомологичными. Было установлено, что три гена локализованы в Х-хромосоме, но в каком месте – неизвестно. Эти клетки гибридизовались клетками мыши, и далее отобрали выделенный клон, в котором соединились обе перестроенные хромосомы.
С помощью такого эксперимента попытались выяснить локализацию генов этих ферментов на Х-хромосоме, испытали этих клонов на синтез необходимых ферментов. Был сделан вывод, о том, что гены всех трех ферментов локализованы в длинном плече Х-хромосомы. Для того, чтобы установить последовательность расположения генов в длинном плече использовались клоны клеток с делецией длинного плеча Х-хромосомы.
Были отобраны клоны с делецией длинного плеча различной величины. Затем их использовали на синтезе 3-х ферментов. Выяснили последовательность расположения: 1-ФГК, 2-ГГФРТ, 3-Г-6ФД. Испытывая эти клоны на другие ферменты можно установить последовательность расположения генов.
ДНК-зонд – «капля» целого гена или его части, помеченная радиоактивным или флуоресцентным методом. Наиболее часто получают методом обратной транскрипции. Была выделена из эритроцитов и-РНК, кодирующая α,β-цепи гемоглобина, и на базе этой РНК получили меченые зонды. Далее взяли культуру клеток человека и приготовили из нее хромосомные препараты. На одном из этапов клетки были обработаны, с целью вызвать неполную денатурацию, и в это же время было добавлено большое количество зондов. Так как зондов много, то они могут заменять участки ДНК, к которым они комплиментарны, далее цепи ренатуируют. Когда хромосомные препараты были приготовлены и окрашены, то на том участке, где к хромосоме присоединился зонд, будет наблюдаться флуоресценция. Если хромосома хорошо дифференцируема, то можно определить, какая это хромосома и на каком участке произошло присоединение.
Митоз состоит из 4 фаз - профаза, метафаза, анафаза, телофаза. Метафаза заканчивается тем, что центромерная область хромосомы расщепляется и половины хромосом - хроматиды начинают движение к разным полюсам, при этом движение хромосом определяет особый белок - динеин, который располагается в области кинетохора хромосом. Происходит укорочение хромосомных нитей за счет деполимеризации волокна в области центриолей, то есть тубулиновые вставки начинают разваливаться, удаляются и волокно становится короче, то есть, доказаны 2 фактора, определяющие движение хромосомы: Значение митоза: обеспечивает равномерное распределение хромосом между дочерними клетками.
Мейоз. Лептонема. Стадия клубка нитей. Хромосомы спирализуются, образуя клубок, который формируется около одной из ядерных стенок. При этом свободные концы ориентированы в направлении клеточного центра. Анафаза. Хроматида движется к полюсам. Сперматогенез - процесс развития мужских половых клеток, заканчивающийся формированием сперматозоидов. Протекает внутри извитых семенных канальцев, составляющих более 90% объёма яичка взрослого половозрелого мужчины. На внутренней стенке канальцев располагаются клетки 2 типов - сперматогонии (самые ранние, первые клетки сперматогенеза, из которых в результате последовательных клеточных делений через ряд стадий постепенно образуются зрелые сперматозоиды) и питающие клетки Сертоли. Сперматогенез начинается одновременно с деятельностью яичка под влиянием половых гормонов в период полового созревания подростка и далее протекает непрерывно (у большинства мужчин практически до конца жизни), имеет чёткий ритм и равномерную интенсивность. Время, необходимое для превращения сперматогония в спермий, занимает у человека около 74-75 суток. При этом сперматогонии, которые встречаются в яичках мальчиков ещё до наступления периода полового созревания, бывают двух типов: А и В, или тёмные и светлые; часть из них сохраняется в качестве запасных, а другие начинают расти и делиться. Сперматогонии, содержащие удвоенный набор хромосом, делятся путём митоза, приводя к возникновению последующих клеток - сперматоцитов 1-го порядка. Далее в результате двух последовательных делений (мейотические деления) образуются сперматоциты 2-го порядка, а затем сперматиды (клетки сперматогенеза, непосредственно предшествующие сперматозоиду). При этих делениях происходит уменьшение (редукция) числа хромосом вдвое. Сперматиды не делятся, вступают в заключительный период сперматогенеза (период формирования спермиев) и после длительной фазы дифференцировки превращаются в сперматозоиды. Происходит это путём постепенного вытяжения клетки, изменения, удлинения её формы, в результате чего клеточное ядро сперматида образует головку сперматозоида, а оболочка и цитоплазма - шейку и хвост. В последней фазе развития головки сперматозоидов тесно примыкают к клеткам Сертоли, получая от них питание до полного созревания. После этого сперматозоиды, уже зрелые, попадают в просвет канальца яичка и далее в придаток, где происходит их накопление и выведение из организма во время семяизвержения. 57. Овогенез. Цитологические и цитогенетические характеристики. Овогенез — это процесс образования женских половых гамет, идет по той же схеме, что и сперматогенез, но с некоторыми существенными отличиями. В результате неравномерного распределения цитоплазмы как при первом, так и при втором делениях мейоза только в одной клетке оказывается большой запас питательных веществ, необходимых для развития будущего зародыша. Следовательно, образуется только одна зрелая яйцеклетка с гаплоидным набором хромосом (n) и три маленькие клеточки, которые впоследствии исчезают. При овогенезе наряду с мейозом происходит так называемое созревание яйцеклетки, во время которого значительно увеличивается ее объем 58. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминирование. Множественный аллелизм.
59. Взаимодействие неаллельных генов. Комплементарность. Комплементарность — вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей. Имеет место при наследовании ореховидной формы гребня у кур, синей окраски баклажанов, зеленого оперения у волнистых попугайчиков и пр. Ореховидная форма гребня у кур обусловливается взаимодействием двух доминантных аллелей комплементарных генов А и В (А_В_). Сочетание одного из этих генов в доминантном, а другого в рецессивном состоянии вызывает формирование либо розовидного (А_bb), либо гороховидного гребня (ааВ_). У особей с генотипом aabb — листовидный гребень.
Ореховидная форма гребня — 9/16, розовидная форма гребня — 3/16, гороховидная форма гребня — 3/16, листовидная форма гребня — 1/16. Расщепление по фенотипу 9:3:3:1. Темно-синяя окраска плодов баклажанов формируется в результате взаимодействия продуктов двух неаллельных доминантных генов А и В. Растения, гомозиготные по любому из соответствующих рецессивных аллелей а и b или по ним обоим, имеют белые плоды.
Синяя окраска плодов у баклажанов — 9/16, белая окраска плодов у баклажанов — 7/16. Расщепление по фенотипу 9:7. При комплементарном действии генов расщепление по фенотипу может быть не только 9:3:3:1 и 9:7, как в приведенных выше примерах, но и 9:6:1 и 9:3:4. 60 Взаимодействие неаллельных генов. Эпистаз, его виды. Эпистаз — вид взаимодействия неаллельных генов, при котором одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов. Гены, подавляющие действие других, не аллельных им генов, называются Эпистатичными, А подавляемые — Гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном. Эпистаз может быть доминантным и рецессивным. При доминантном эпистазе, когда доминантный аллель одного гена (А) препятствует проявлению аллелей другого гена (B или b), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношениями 12:3:1 или 13:3. При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление а потомстве двух гетерозигот по таким генам будет соответствовать соотношению 9:3:4. Невозможность формирования признака при рециссивном эпистазе расценивают также как проявление несостоявшегося комплементароного взаимодействия, которое возникет между доминантным аллелем эпистатического гена и аллелями гена, определяющего этот признак.
61. Взаимодействие неаллельных генов. Полимерия, ее виды.
— один из видов взаимодействия неаллельных генов, при котором на проявление количественного признака оказывают влияние одновременно несколько генов. При этом, чем больше в генотипе оказывается доминантных генов, обусловливающих этот признак, тем ярче этот признак выражается. Так, у человека количество пигмента меланина в коже (и, следовательно, цвет кожи) определяется тремя неаллельными генами: А1, А2, А3. Наибольшее количество меланина образуется в том случае, когда в генотипе все три аллеля находятся в гомозиготном доминантном состоянии: А1А1А2А2А3А3. В этом случае будет наблюдаться темно-коричневый цвет кожи, характерный для представителей негроидной расы. Самому светлому цвету кожи, характерному для европеоидов, соответствует генотип а1а1а2а2а3а3 (все три аллеля в гомозиготном рецессивном состоянии). Промежуточные варианты будут определять различную интенсивность пигментации, при этом чем больше доминантов окажется в генотипе, тем темнее будет кожа. Так, например, человек с генотипом А1а1А2А2А3а3 будет иметь более темную кожу, чем человек с генотипом А1а1А2а2А3а3. Полимерный механизм определяет также наследование многих хозяйственно цепных количественных признаков животных и растений: содержание сахара в корнеплодах свеклы, содержание витаминов в плодах и овощах, длина колоса злаков, длина початка кукурузы, плодовитость животных, молочность скота, яйценоскость кур и др. Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммарного действия нескольких генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление в F2 по фенотипу при дигибридном скрещивании происходит в соотношении 1:4:6:4:1, а в целом соответствует третьей, пятой (при дигибридном скрещивании), седьмой (при тригибридном скрещивании) и т.п. строчкам в треугольнике Паскаля.
При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление в F2 по фенотипу при дигибридном скрещивании — 15:1
62. Хромосомная теория наследственности. Полное и неполное сцепление генов.
Основные положенияхромосомной теории наследственности:
Гены находятся в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у каждого вида равно гаплоидному набору хромосом. Каждый ген в хромосоме занимает отдельное место (локус). Гены в хромосомах расположены линейно. Между гомологичными хромосомами происходит обмен аллельными генами. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.
63 Зигота, морула и формирование бластулы. Зигота — диплоидная (содержащая полный двойной набор хромосом) клетка, образующаяся в результате оплодотворения (слияния яйцеклетки и сперматозоида). Зигота является тотипотентной (то есть, способной породить любую другую) клеткой. Термин ввёл немецкий ботаник Э. Страсбургер. При объединении отцовского и материнского наборов хромосом в новой клетке зиготе, потомство рождается, обогащенное наследственной информацией. Само развитие происходит, с появлением у него новых признаков. Организм, развившийся из зиготы, содержит две хромосомы в диплоидном наборе, каждая пара из них одинакова по внутреннему строению, форме, имеет гены, управляющие появлением однородных признаков. Развитие зиготы Зигота либо непосредственно после оплодотворения приступает к развитию, либо одевается плотной оболочкой и на некоторое время превращается в покоящуюся спору (часто называется зигоспорой) - характерно для многих грибов и водорослей. У человека первое митотическое деление зиготы происходит спустя примерно 30 часов после оплодотворения, что обусловлено сложными процессами подготовки к первому акту дробления. Клетки, образовавшиеся в результате дробления зиготы называют бластомерами. Первые деления зиготы называют «дроблениями» потому, что клетка именно дробится: дочерние клетки после каждого деления становятся всё мельче, а между делениями отсутствует стадия клеточного роста. Мо́рула — это стадия раннего эмбрионального развития зародыша, которая начинается с завершением дробления зиготы. Клетки морулы делятся гомобластически. После нескольких делений клетки зародыша формируют шаровидную структуру, напоминающий ягоду шелковицы. Бластомеры, клетки морулы, секретируют серозную жидкость, заполняющую внутреннюю часть этого конгломерата, и формируют в нем полость.В таком состоянии бластулы – являют собой примитивный организм, схожий по форме с полым шаром, прикрепляющимся к стенкам матки. Зигота делится очень быстро, клетки уменьшаются в размерах и не успевают расти. Поэтому зародыш не увеличивается в объеме. Клетки, образующиеся в результате дробления зиготы, называются бластомерами, а перетяжки, отделяющие их друг от друга, называются бороздами дробления. Дробление зависит от количества и местоположения желтка в яйцеклетке. При небольшом содержании желтка дробится вся зигота, при значительном количестве дробится только часть зиготы, свободная от желтка. В связи с этим яйцеклетки разделяют на голобластические (дробящиеся полностью) и меробластические (с частичным дроблением). Следовательно, дробление зависит от количества желтка и с учетом ряда признаков подразделяется: по полноте охвата процессом материала зиготы на полное и неполное; по отношению размеров образующихся бластомеров на равномерное и неравномерное и по согласованности делений бластомеров – синхронное и асинхронное. Количество бластомеров после каждого деления увеличивается кратно двум (2; 4; 16; 32 и т.д.). В результате такого дробления образуется шарообразный зародыш, который называется бластулой. Клетки, которые образуют стенку бластулы, называют бластодермой, а полость внутри бластоцелью. Анимальная часть бластулы называется – крышей, а вегетативная часть – дном бластулы.
64. Гаструляция. Типы гаструл. После образования бластулы или морулы в результате перемещения клеточного материала образуется двухслойный зародыш или гаструла (gaster – желудок). Процесс, который приводит к образованию гаструлы, называется гаструляцией. Характерной особенностью гаструляциеи эмбрионального развития является интенсивное перемещение клеток, в результате которого будущие зачатки тканей перемещаются в места, предназначенные для них в соответствии с планом структурной организации организма. В процессе гаструляции возникают клеточные слои, которые называются зародышевыми листками. Вначале образуется два зародышевых листка. Наружный из них получил название эктодермы (ectos – вне, derma – кожа), а внутренний – энтодермы (entos – внутри). У позвоночных животных в процессе гаструляции образуется и третий, средний зародышевый листок – мезодерма (mesos – средний). Мезодерма образуется всегда позже экто- и энтодермы, поэтому ее называют вторичным зародышевым листком, а экто- и энтодерму – первичными зародышевыми листками. Эти зародышевые листки вследствие дальнейшего развития дают начало эмбриональным зачаткам, из которых будут образовываться различные ткани и органы.
|