Продолжение № 62
Нагрузка, (кВт×ч)/год: Освещение 150; Телевизор, радио, пылесос 200; Холодильник 90; Морозильник 180; Стиральная машина 240; СВЧ-печь 400; Вентилятор 275; Посудомоечная машина 310; Стоимость энергии 0,56 $/(кВт×ч); Габариты 20 м2, масса 270 кг. Преимущества по сравнению с электрогенератором на жидком топливе – экономичнее. Вторая фаза массового использования СЭС в энергосистеме связана с созданием технологий и материалов, позволяющих снизить стоимость установленной мощности примерно в 5 раз (бесшумность, экологическая чистота) 1-2 $ за Вт, а стоимость электроэнергии до 0,10-0,12 $/кВт×ч. Принципиальным ограничением для такого снижения стоимости является высокая цена кремния солнечного качества 40-100 $/кг. В России в настоящее время существует 8 предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год. Производство солнечных элементов к 2010 г. может быть доведено до 2000 МВт в год. Однако для этого необходима инвестиционная поддержка, в первую очередь по созданию новых технологий производства кремния. Крупные СЭС могут быть использованы для покрытия пиковых нагрузок в энергосистемах.
№ 63 Типы ветроэнергетических установок. Ветроэлектростанции. Расчёт идеального ирреального ветряка. Схема ветроэнергетической установки Нет схемы!!!! Наиболее важным параметром, характеризующим энергетический потенциал ветра, является его скорость. Кинетическая энергия потока воздуха, занимающего объем
Мощность ветрового потока, проходящего через площадь Отношение мощности
Теоретически максимально возможное значение этого коэффициента С учетом механических и электрических потерь мощности ВЭУ:
В большинстве современных ветровых турбин с помощью специальных устройств (центробежных, гидравлических и др.) обеспечивается возможность поворота всей лопасти или отдельной ее части, изменения за счет этого угла атаки и регулирования мощности на валу по заданному закону. При скорости ветра меньше номинальной лопасть разворачивается таким образом, чтобы угол атаки был оптимальным и коэффициент использования ветра максимальным. При скорости ветра выше номинальной разворотом лопасти добиваются уменьшения коэффициента использования энергии ветра до значения, при котором мощность на валу соответствует номинальной.
Эта зависимость на примере ветровой турбины 2 МВт показана на рисунке. Угол атаки
Удельная стоимость установленной мощности современных ВЭУ меняется от 10000 $/кВт (малой мощности) до 1000 $/кВт (большой мощности), а стоимость электроэнергии 0,05 $/кВт. Недостатками ВЭУ являются непостоянство вырабатываемой электроэнергии, что создает некоторые проблемы при их работе на сеть и необходимость использования аккумуляторов при работе в автономном режиме, а также более высокая стоимость 1 кВт установленной мощности. Недостатками ВЭС, состоящих из множества ВЭУ являются большой шум, электромагнитные помехи, опасность для птиц. Преимущества, это - отсутствие топлива, неисчерпаемость энергии, низкая стоимость вырабатываемой электроэнергии, возможность полной автоматизации, возможность энергообеспечения автономных объектов, модульное исполнение. Использование ВЭУ считается экономически приемлемым при среднегодовой скорости ветра не менее 5 м/с. Районы со среднегодовой скоростью ветра более 6 м/с являются особо благоприятными для развития ветроэнергетики. Во всех ветровых двигателях используют один и тот же принцип. Ветер обдувает поверхность лопастей и возникающее при этом разряжение создает силу. Действуя на лопасть, она заставляет ее вращаться вокруг центрального вала, приводящий в движение электрогенератор. В настоящее время разработан еще один принципиально новый тип ветроэлекторостанции (ВЭС), позволивший значительно установленную мощность агрегата. Ветродвигатель состоит из цилиндрической полой башни, в стенках которой сделаны вертикальные щели, снабженные створками (жалюзи). Открытая сверху башня имеет полое конусное основание с проемами на его боковых стеках для входа воздуха. В горловине основания размещается воздушная турбина, вал которой через маховик и муфту соединяется с вертикальным валом генератора. Принцип действия такого агрегата сводится к следующему. Воздушный поток, поступая внутрь башни через открытые с наветренной стороны створки в тангенциальном направлении, обтекает цилиндрические стенки башни, в которых жалюзи закрыты, и завихряются. При этом окружающая скорость по мере приближения к выходу из башни все время увеличивается из-за уменьшения радиуса вращения. В результате внутри башни образуется вихрь, в центре которого создается область пониженного давления - "стержень". Наружный воздух через проемы на боковых стенках конусного основания под действием избыточного давления устремляется в основание "стержня" и, перемещаясь вверх, вращает лопасти воздушной турбины, а следовательно, и вал генератора. Такой вихревой ветродвигатель может работать при слабом ветре и даже без него. В этом случае достаточно перепада температур на дне и в верхней части башни, но не менее 10°С. Для подогрева воздуха в основании башни устанавливается подогревательная камера, в которой используется, например, теплая вода конденсаторов ТЭС, солнечная энергия и т.п. Подобный ветровой двигатель может обеспечить значительную единичную мощность. При возникает проблема -избыток энергии в ветреную погоду и недостаток в безветрие. Для этого используют ветроустановки с аккумулированием энергии. Наиболее перспективным является производство водорода в качестве топлива. Электрический ток от ветроагрегата разлагает воду на О2 и Н2. Водород можно хранить и сжигать в топках тепловых ЭС.
№ 64
|