Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система шифрования RSA





 

Рассмотрим асимметричную систему шифрования RSA, названную по имени ее авторов Ривеста Р.Л., Шамира А. и Адлемана Л.. В данной системе односторонняя функция строится на основе произведения двух очень больших (сотни десятичных цифр) простых числе p и q: . В то время как выбор двух больших простых чисел и вычисление их произведения не вызывает особых затруднений, обратная задача – разложение произведения на простые множители (факторизация) приводит к значительным вычислительным и временным затратам. Сложность факторизации числа иллюстрирует следующий факт. Для разложения числа, содержащего около 130 десятичных цифр, потребовалась бы работа 1600 ЭВМ в течение 8 месяцев. Следовательно, произведение, как часть ключа шифрования, может быть сделано общедоступным, в то время как множители, которые могут «разоблачить» ключ дешифрования, соответствующий ключу шифрования, остаются секретными.

Пусть , где p и q – простые числа, т. е. не имеющие делителей кроме 1 и самих себя. Несмотря на то, что n общедоступно, p и q являются скрытыми из-за большой сложности разложения n на множители. В теории чисел известна функция Эйлера , которая определяет количество положительных чисел, меньших n и взаимно простых с n. Так, для рассматриваемого произведения функция Эйлера вычисляется как

.

Важной особенностью функции Эйлера является то, что для любого целого x из интервала (0, n –1) и любого целого k имеет место следующее соотношение

. (13.5)

Затем выбирается два целых числа и d, взаимно простые с , такие, что удовлетворяют равенству

или , (13.6)

где k – некоторое натуральное число.

Пара чисел образует открытый ключ, который известен всем абонентам секретной системы, тогда как используется в качестве секретного ключа. Процедура шифрования и расшифрования осуществляется следующим образом. Предположим, что абонент A собирается отправить сообщение абоненту B. Первоначально шифрованию открытого текста предшествует преобразование по некоторому правилу его символов в целые числа (в простейшем виде оно поясняется в примере 13.3.1). Затем абонент A, зная открытый ключ абонента B, шифрует преобразованный открытый текст, предназначенный абоненту B, согласно следующей показательной функции по модулю

.

Очевидно, что в указанной трансформации проявилась односторонняя функция, присущая системе RSA.

Абонент B, приняв шифротекст y, производит вычисление еще одной показательной функции, используя свой закрытый ключ , в результате чего осуществляется обратная трансформация

,

где учтено соотношение (13.5).

Одним из возможных способов взлома шифра при данном ключе может служить следующий алгоритм. Необходимо разложить n на множители p и q, вычислить , а затем определить d из соотношения (13.6). Все операции в данном алгоритме, за исключением разложения n на множители, представляют собой простые действия. Однако, как уже упоминалось ранее, при значительном n и отсутствии сведений о значении сомножителей данная задача неразрешима при существующем уровне вычислительной техники.

Авторы системы RSA рекомендуют для обеспечения высокой стойкости использовать числа, содержащие около 200 десятичных цифр. Хотя разработаны специальные вычислители, позволяющие быстро возводить числа в большие степени, быстродействие RSA считается низким. Поэтому аналогично рассмотренному в 13.3 методу шифрование с помощью алгоритма RSA применяется в отношении сеансового ключа.

Пример 13.4.1. Пусть абонент B выбирает свои ключи согласно описанному алгоритму: , т.е. и . Пусть в качестве , взаимно простого числа с , выбирается . Затем определяется значение , удовлетворяющее условию

или .

Отметим, что для вычисления , как правило, используется разновидность алгоритма Евклида для вычисления . Применение его дает . Таким образом, ключ для шифрования , для расшифрования – .

Предположим, что абонент A направляет сообщение вида, (что может быть номером секретного шифра в книге шифров) абоненту B. Зная открытый ключ абонента B, абонент A осуществляет следующие вычисления

.

Абонент B, приняв сообщение y, производит вычисления с использованием своего секретного ключа

,

т.е. правильно восстановлен номер шифр, который используется при шифровании открытого текста.







Дата добавления: 2015-04-19; просмотров: 423. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия