Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система шифрования методом укладки рюкзака. (Ранцевая система шифрования)





 

Классическая задача об укладке рюкзака формулируется следующим образом. Пусть имеется множество предметов с указанием их веса, некоторые представители которого укладываются в рюкзак. Зная вес наполненного рюкзака (без учета веса самого рюкзака), необходимо определить содержимое рюкзака.

Опишем задачу о рюкзаке с использованием вектора рюкзака и вектора данных. Вектор рюкзака представляет собой набор из n различных чисел (аналогично множеству различных предметов, укладываемых в рюкзак), т.е. . Вектор данных – множество двоичных символов, т.е. , где . Вес наполненного рюкзака есть сумма подмножества компонентов вектора рюкзака, определяемая как

.

Тогда задачу о рюкзаке можно сформулировать следующим образом: по заданному значению S и известном определить .

Пример 13.2.1. Пусть . Пусть . Требуется определить . Методом проб можно установить, что

.

Тогда . ð

В этом простом примере решение было найдено методом проб и ошибок, однако если в заданном множестве не 10, а 100 и более различных чисел, то задача может стать вычислительно неосуществимой. Следовательно, по заданному вектору нахождение S при известном осуществляется просто, как . Однако решение обратной задачи, т.е. нахождение по известному и заданному S представляет собой трудную в вычислительном плане задачу, и, значит, может рассматриваться как односторонняя функция.

Для организации схемы шифрования на основе этой задачи необходима не просто односторонняя функция, а функция с лазейкой, в качестве которой выступает быстровозрастающая последовательность компонентов вектора . Вектор будет быстровозрастающим, если для его компонентов выполняется соотношение

,

т.е. каждый компонент вектора больше суммы предшествующих ему компонентов. Тогда если является быстровозрастающим, то последний элемент , т.е. принимает значение единица, если , и – в противном случае. Все предшествующие элементы находятся согласно соотношению

(13.3)

где .

Пример 13.2.2. Пусть , а . Очевидно, что является быстровозрастающим. Тогда из (13.3) следует, что . ð

Из примера очевидным образом следует, что в случае наличия быстровозрастающего , т.е. лазейки, определение осуществляется достаточно просто, в противном же случае задача отыскания становится трудно осуществимой. Следовательно, в качестве части секретного ключа необходимо использовать быстровозрастающую последовательность и именно с учетом этого положения строить схему шифрования.

Данная схема шифрования, известная также как схема Меркла–Хэллмана, основана на образовании вектора , который не является быстровозрастающим. Следовательно, задача отыскания по при известном S не является легкоразрешимой. При этом схема обязательно должна содержать лазейку в виде быстровозрастающего вектора , который позволит разрешенным пользователям легко решить задачу.

Первоначально образуем быстро возрастающий вектор и выберем простое число P, при котором выполняется следующее неравенство

.

Затем случайным образом выберем число и вычислим , такое что

. (13.4)

Вектор и числа являются секретными. Затем из элементов сформируем вектор , компоненты которого определяются как

.

Формирование вектора согласно последнему соотношению знаменуют собой формирование вектора рюкзака с лазейкой. Так, если нужно передать сообщение, описываемое вектором , то первоначально умножается на , что дает число S, вычисляемое как

,

которое и передается по открытому каналу связи.

Санкционированный пользователь получает S и, используя соотношение (13.4), превращает его в вида

.

Поскольку разрешенный пользователь знает засекреченный быстровозрастающий вектор , для отыскания он может использовать .

Пример 13.2.3. Предположим, что абонент A хочет создать общедоступную и конфиденциальную схему шифрования. Первоначально он создает быстровозрастающий вектор , размерность которого n определяются потребностями абонента. Затем он определяет число P из условия

и число W, такое что , при котором . Пусть, например, , , так, что , которые и образуют секретный ключ пользователя.

Образовав секретный ключ, абонент A переходит к формированию общедоступного ключа, в качестве которого выступает вектор , содержащий «лазейку»:

,

так что

.

Предположим, что пользователь B собирается послать сообщение абоненту A. Если , то пользователь B создает следующее число

и передает его пользователю A. Последний преобразует его в по алгоритму

,

которое, в свою очередь, определяется как . Учитывая, что вектор является быстровозрастающим, на основании алгоритма (13.3) абонент A легко восстановит вектор .

Поскольку , то . Далее

,

следовательно, . Аналогично для :

,

то . Продолжая следовать алгоритму (13.3), получаем . Так что в итоге имеем .

Схем Меркла–Хэллмана в настоящее время считается взломанной, поэтому для реализации криптосистем с открытыми ключами используется алгоритм RSA.







Дата добавления: 2015-04-19; просмотров: 1327. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия