Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условная вероятность





ОЛ-1, гл. 3.

Вероятность события A, вычисленную в предположении, что событие B произошло, принято называть условной вероятностью и обозначать P(A | B).

Классическая схема. Пусть событиям A и B благоприятствуют NA и NB элементарных исходов соответственно. Посмотрим, что дает нам имеющаяся информация о событии B. Поскольку событие B произошло, то достоверно известно, что в результате опыта появился один из NB элементарных исходов, составляющих событие В. Значит, теперь уже при определении степени возможности события A необходимо выбирать только из NB возможных исходов, причем событию A благоприятствуют NAB исходов, при которых происходят и событие А, и событие B, или, другими словами, происходит событие AB. При этом по-прежнему будем считать все NB входящих в событие B исходов равновероятными. Поэтому условную вероятность P(A | B) события A при условии события B в рамках классической схемы вероятности естественно определить как отношение числа NAB исходов, благоприятствующих совместному осуществлению событий A и B, к числу NB исходов, благоприятствующих событию В, т.е.

Статистический подход. Пусть n – общее число экспериментов; nA – число экспериментов, в которых наблюдалось событие A; nB – число экспериментов, в которых наблюдалось событие B, nAB – число экспериментов, в которых наблюдалось событие AB. Условной частотой события A при условии, что B произошло естественно назвать частоту события A, но только не среди всех повторений опыта n, а лишь среди тех, в которых наблюдалось событие В, т.е.

Определение. Условной вероятностью события A при условии (наступлении) события B называют отношение вероятности пересечения событий A и B к вероятности события B:

При этом предполагают, что .

В связи с появлением термина "условная вероятность" будем вероятность события называть также безусловной вероятностью события.

Теорема. Условная вероятность P(A | B) обладает всеми свойствами безусловной вероятности P(A).

Замечание. Условная вероятность представляет собой безусловную вероятность, заданную на новом пространстве Ω1 элементарных исходов, совпадающем с событием B.

Геометрическая интерпретация условной вероятности. При практическом вычислении условной вероятности события A при условии, что событие B произошло, часто удобно трактовать условную вероятность как безусловную, но заданную не на исходном пространстве Ω элементарных исходов, а на новом пространстве Ω1 = B элементарных исходов.

Теорема умножения вероятностей (формула для вероятности произведения нескольких зависимых событий). Если A = A 1 A 2 ...An (т.е. А −; пересечение событий A 1, A 2,..., An) и P(А)> 0, то справедливо равенство P(A)= P(A 1)P(A 2| A 1)P(A 3| A 1 A 2)...P(An | A 1 A 2 ...An 1), называемое формулой умножения вероятностей.

Доказательство. Поскольку , а то и . Учитывая это неравенство, согласно определению условной вероятности, имеем Умножая обе части этого равенства на получаем Аналогично находим . Тогда Продолжая эту процедуру, получаем формулу умножения вероятностей.

Определение. События A и B, имеющие ненулевую вероятность, называют независимыми, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B. В противном случае события A и B называют зависимыми.

Теорема. События A и B, имеющие ненулевую вероятность, являются независимыми тогда и только тогда, когда

Теорема. Если события A и B независимые, то независимыми также являются пары событий и B, A и , и , если вероятности соответствующих событий ненулевые.

Определение. События А 1, A 2,..., Аn называют независимыми в совокупности, если вероятность пересечения любых двух различных событий равна произведению вероятностей этих событий; вероятность пересечения любых трех событий равна произведению их вероятностей;...; вероятность пересечения всех событий равна произведению их вероятностей.

Формула для вероятности произведения нескольких независимых событий). Если A = A 1 A 2 ...An (т.е. А −; пересечение событий A 1, A 2,..., An), P(А)> 0 и события А 1, A 2,..., Аn независимы в совокупности, то справедливо равенство P(A)= P(A 1)P(A 2)P(A 3)...P(An).

Теорема. Если события А 1, A 2,..., Аn независимы в совокупности, то и события независимы в совокупности. Замечание. (о связи между совместными и зависимыми событиями). Между понятиями „несовместные" и „независимые" события имеется следующая связь: 1) если A и B − несовместные события (и , и ), то они обязательно зависимые (убедитесь самостоятельно); 2) если A и B − совместные события, то они могут быть и зависимыми, и независимыми; 3) если A и B − зависимые события, то они могут быть и совместными, и несовместными. Следует помнить, что при использовании теоремы сложения вероятностей нужно проверять несовместность событий, а при использовании теоремы умножения − независимость событий.

Формула для вероятности суммы нескольких совместных независимых событий. В прошлой лекции была получена формула:

В случае независимых, но совместных событий она примет вид







Дата добавления: 2015-03-11; просмотров: 1177. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия