Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Каноническая форма задач ЛП





Задача ЛП представлена в канонической форме, если в ее модели все функциональные условия имеют вид равенств и все переменные ограничены по знаку. Направление цели не имеет существенного значения, для однозначности канонического представления будем иметь в виду максимизацию критерия. Модель задачи:

Векторно-матричные представления: L = max

или

С– вектор коэффициентов целевой функции; Aj - векторы условий, j = В– вектор ограничений (свободных членов); А– матрица условий; Х– вектор переменных; – число переменных в канон. форме, >= числа переменных в исходной модели

Любую задачу ЛП можно привести к каноническому виду. Возможны 3 случая несоответствия исходной модели каноническому представлению.

1.Если в исходной постановке критерий минимизируется, то изменив знак критерия на обратный, приходим к задаче максимизации, т.е. если то

2.В исходной модели есть неравенства. При этом способ преобразования зависит от знака неравенства. В случае неравенства очевидно, что разность правой и левой части будет неотрицательной и неизвестной величиной, которую можно принять за новую переменную: Отсюда получаем следующее равенство: Аналогично при неравенстве Новая переменная (дополнительная, >=0)- разность левой и правой части и равенство записывается в виде

3.Некоторые переменные исходной модели не имеют ограничения на знак. Исключение таких переменных производится следующим способом.

Пусть – переменная, которая может иметь любой знак. Введем две неотрицательные переменные и во всей модели заменяем их разностью:

Таким образом, последние два случая преобразования к каноническому виду приводят к увеличению числа переменных, и поэтому всегда

Исходная модель: Каноническая модель:

 







Дата добавления: 2015-04-19; просмотров: 502. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия