ОСНОВНЫЕ ФУНКЦИИ КЛЕТКИ
Обмен веществ. Обмен веществ, или метаболизм,— это совокупность химических реакций, лежащих в основе жизнедеятельности клетки. Химические реакции, ведущие к синтезу веществ клетки, называют ассимиляцией (assimilatio — усвоение) или анаболизмом (anabole — отложение), а реакции, которые ведут к расщеплению веществ на более простые составляющие, именуют диссимиляцией или катаболизмом (katabole — сбрасывание вниз). В процессе синтеза веществ клетка расходует энергию для построения более сложных органических соединений из простых, а расщепление сложных соединений сопровождается освобождением энергии. Однако сами по себе белки, жиры и углеводы и продукты их расщепления не могут быть непосредственно использованы в качестве горючего для энергетических потребностей клетки. Роль такого универсального горючего выполняет аденозинтрифосфорная кислота (АТФ). Освобождающаяся при расщеплении веществ энергия рассеивается в виде теплоты и идет на синтез молекул АТФ, причем на образование молекулы АТФ из аденозиндифосфата затрачивается около 41,9 кДж/моль и, естественно, столько же энергии освобождается при переходе АТФ в АДФ. Синтез АТФ в клетке, осуществляемый при помощи митохондрий, ведет к значительной аккумуляции энергии для ее последующего использования. В пищеварительном тракте животных организмов происходит расщепление жира на глицерин и жирные кислоты, белков — на аминокислоты, нуклеиновых кислот — на нуклеотиды, крахмала и гликогена — на глюкозу без образования молекул АТФ, а энергия, освобождающаяся при расщеплении этих веществ, рассеивается в виде теплоты. Всасываясь, эти вещества поступают в клетки организма и на внешней мембране митохондрий подвергаются анаэробному расщеплению с освобождением 7% энергии и синтезом 4 молекул АТФ, 2 из которых запасаются клеткой. Продукты гликолиза на внутренней мембране митохондрий подвергаются аэробному расщеплению с выделением свыше 90% энергии и синтезом 36 молекул АТФ. На 1 моль глюкозы, например, синтезируется 38 молекул АТФ, или 1589,2 кДж/моль, т. е. 55% энергии, полученной от расщепления глюкозы, сберегается клеткой в виде АТФ, а 45% рассеивается в виде теплоты. Фиксация энергии растительными клетками осуществляется в процессе фотосинтеза, при котором световая энергия солнца в ряде последовательных реакций превращается в химическую энергию, которую может использовать клетка. В процессе фотосинтеза на каждый моль синтезированной глюкозы запасается 2861,7 кДж. Движение. Формы движения живого вещества чрезвычайно разнообразны. Они могут проявляться в сокращении миофибрилл, в движениях ресничек и жгутиков, в амебоидном движении, в циклозе цитоплазмы растительных клеток, в движении митотического веретена, центриолей, хромосом, хроматид, в перемещении молекул и органоидов, в процессах секреции, фагоцитоза, пиноцитоза и пр. Все формы движения в клетке, как и ее перемещения, связаны с использованием энергии, заключенной в макроэргических соединениях типа АТФ. Раздражимость. Раздражимость — это способность клеток и живых организмов реагировать на изменение факторов внешней среды: температуру, свет, влажность, химические вещества, рН, осмотическое давление, рентгеновское излучение и пр. Реакция клетки на эти раздражители выражается в перемещении ее от воздействующего агента — отрицательный таксис (taxis — расположение в порядке) либо в приближении к нему — положительный таксис. Наименования таксисов соответствуют физической природе раздражителя. Существует, например, хемотаксис — движение, вызванное воздействием химических веществ, фототаксис — движение, обусловленное воздействием света, термотаксис — движение под воздействием температуры и пр. Биологический смысл перемещения клеток и одноклеточных организмов под влиянием определенных воздействий внешней среды состоит в том, что таким способом они сохраняют себе жизнь, двигаясь в зону комфорта, которая наиболее благоприятна для их жизнедеятельности. Реакция клетки на раздражение может проявляться в усилении обмена веществ, в выделении секрета, в мышечном сокращении и других формах возбуждения. Воздействие чрезмерного раздражителя ведет к нарушению нормального процесса жизнедеятельности клетки, которое проявляется в набухании, разрушении митохондрий и в изменении клеточного дыхания. Клетка начинает удовлетворять свои энергетические потребности лишь за счет гликолиза, который ведет к увеличению содержания молочной кислоты и воды в цитоплазме клетки. Смещение реакции цитоплазмы в кислую сторону создает благоприятные условия для коагуляции белков, активации гидролитических ферментов лизосом и переваривания собственных белков клетки. Такое состояние клетки называют паранекрозом (para — около, necrosis — отмирание). Если действие раздражителя будет прекращено, то исходом этого состояния может быть возвращение к норме. В противном случае паранекроз переходит в некробиоз (necros — мертвый, bios — жизнь), т. е. в состояние медленного отмирания клетки. Рост. Рост клеток, сопровождающийся увеличением объема ядра и цитоплазмы, наиболее ярко проявляется в постмитотическом периоде жизнедеятельности клетки. В это время клетка интенсивно синтезирует белки для построения органоидов, цитоплазматических мембран, ферментных систем. Растительные клетки синтезируют белки из простейших органических веществ — углекислого газа, солей аммония, а животные — из аминокислот, которые образуются при расщеплении белков тех животных и растений, которыми они питаются. Синтез белка. Основное значение в синтезе белка принадлежит ДНК, структурная организация которой определяет строение всех белков, синтезируемых в клетке. В молекуле ДНК имеется ряд участков, определяющих программу синтеза какого-либо белка. Эти участки называются генами. Индивидуальная последовательность аминокислот в молекуле каждого белка, синтезирующегося в клетке, закодирована в определенной последовательности нуклеотидов — аденина, гуанина, тимина, цитозина в ДНК. Программа синтеза белка копируется с ДНК путем синтеза информационной РНК, информация которой представляет собой различные сочетания трех нуклеотидов, или триплеты. Всего существует 64 сочетания триплетов нуклеотидов для синтеза белка из 20 аминокислот. Аминокислоты, находящиеся в цитоплазме клетки, транспортируются к рибосомам транспортной РНК, которая также синтезируется на ДНК. Транспортная РНК имеет участок, где располагается триплет нуклеотидов, комплементарный соответствующему триплету информационной РНК; участок, к которому присоединяется соответствующая аминокислота, комплементарная триплету нуклеотидов транспортной РНК; участок для соединения с ферментом и участок фиксации с рибосомой. Рибосомы своей малой субъединицей осуществляют контакт с информационной РНК, а большой — с транспортной РНК. Продвигаясь по информационной РНК, рибосома дает возможность транспортной РНК считывать программу синтеза белка и доставлять необходимые аминокислоты к полипептидной цепочке, осуществляя синтез белка. Размножение. Размножение клеток является одним из обязательных условий эмбриогенеза и гистогенеза, так как без возникновения путем деления определенного количества клеток, которые создают эмбриональный зачаток, невозможно образование тканей. Размножение клеток имеет место и после окончания процессов эмбрионального гистогенеза; оно связано с ростом организма, с замещением стареющих и отмирающих клеток, с регенерацией тканей, с размножением организма, с обновлением структурной организации клеток, которые утрачивают способность к биосинтезу. Различают три формы клеточного деления: митоз (mitos — нить), или непрямое деление, или кариокинез; амитоз, или прямое деление; мейоз (meiosis — уменьшение), или редукционное деление (reducere — уменьшение).
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
|